
An Introduction to Algorithms
Prof. Sourav Mukhopadhyay
Department of Mathematics

Indian Institute of Technology, Kharagpur

Lecture – 23
Universal Hashing

So we talked about universal hashing. So, before that let us just complete the analysis of

open addressing, so analysis of open addressing.

(Refer Slide Time: 00:28)

So, basically just to recap, so in the open addressing method we are just having the probe

sequence here hash function is a function from u cross this is the sequence number of

probes to. So, we have basically, we have a hash table of size m 0 to m minus 1. So, I

mean this is the set of keys now if you insert a key. So, what we do we just apply the 0th

probe. So, so we apply the 0th probe. So, h of k comma 0 and if it is heating some

occupied slot then we go for the next probe h of k comma 1 this is the 0th probe, this is

1th probe and if it is still heating some occupiers slot then we go for the next probe h of k

comma 2 and these way we continue until we get a empty slot. Also you get a empty slot

we will insert that value k inside the k over here.

So, and we have seen to example of probing linear probing and the double probing in the

last class. So, now, we will analyse is this is called open addressing. So, we analyse the,

so everything we have to be feed in the table. So, there is no storage outside the table.

So, we are not allowed to have a linked list outside the table. So, changing is not

allowed. So, we have to feed everything inside the table. So, basically the idea is to

search for a empty slot by this probe sequence. So, we have a sequence of hash

functions. So, we have applying first hash function if it is heating some occupied slot

next expansion like this. So, this is the recap of what is open addressing now let us

analysis this open addressing by a theorem.

(Refer Slide Time: 03:00)

So, this theorem is telling, given an open address hash table hash table with load factor

alpha which is basically n by m and this has to be less than 1. Why it is less than 1?

Because if there are, so if there are n keys, if there are m slots if the keys number of keys

is more than the slot then there is no way we can feed the keys, if there are say if there

are ten slots and if there are 20 keys then we cannot fit 20 keys in the 10 slot. So, we

need to have the extra storage there so that assumption is mandatory. So, n is the number

of keys and m is the number slots. So, n has to be less than m otherwise we cannot fit the

keys in the table by the probing because if it is so, this assumption is quite.

(Refer Slide Time: 04:35)

So, m n has to be less than m then the theorem is telling the expected number of probe n

for around successful search the expected number of probes expected number of probes

in an unsuccessful search, unsuccessful search means we are searching a key which is

not there in the table unsuccessful search we searching a key which is not there in the

table is at most 1 by 1 minus alpha. So, this is theorem what this theorem is telling. So,

we have n keys we have m slots and we have a open address hash function and we have

fill up these keys into the slots by using this open address hash function and now suppose

we are trying to find out the key which is not there in the table. So, now what is the

number probes we should have we should do this for this search. So, that is the theorem.

And that it is telling 1 by 1 minus alpha. So, how to proof this? To proof this we will just

use some probability staff. So, there are say basically there are m slots 0 to m minus 1 m

slots and in this m slots there are k keys I saw n keys are seating there now 1 probe is

mandatory. So, one probe, probe is required, required. So, one probes is mandatory

because. So, suppose we are finding a key k a star which is not there in the table. So, for

that we need to try the probe that is 0 of, 0 that is the 0th probe. So, 1 probe is required.

So, if we denote this is the number of probes. So, one probe is required.

Now, when we go for the second probe if this is heating to a occupied slots if this is

heating to a occupied slots then only we go for the second probe I mean next probe. So,

now, what is the probability that it is heating to a occupied slots. Now what is the

probability that it will heat to a occupied slot now total number of slot is same. Now

there are n keys live in this here, so just the classical definition of the probability. So, if

we choose one of this if it is heat one of the slot where this n keys are lives then that is

the probability. So, basically probability that it will heat to a occupies slot is n by m.

So, the probability that probability that it will it will heat to a into a occupied slot is

basically n by m because there are a m slot which is favourable case and there are m slots

are there n keys are there in that slot and there are total m slots. So, if we can heat

anyone of this n. So, that is the just classical definition, so n by m. So, with this

probability n by m then we will go for the next probe so that means, we will go for next

probe with this probability 1 by m and then again next probe.

(Refer Slide Time: 09:14)

Then again we will go for the next probe if it is again heating to a occupied slot and that

probability is basically n minus 1 by m minus 1 and then we will go for the next probe

like this. And again we will go for the next probe it is n minus this probability like this.

So, this is the number of probes or we can say expected number of probes in the

probability calculation. So, now, we want to simplify this.

(Refer Slide Time: 10:03)

So, this is the, so the expected number of probes expected number of probes for an

unsuccessful search is basically this. Now we can simplify this just by using this fact n

minus i by m minus i is less than equal to n by m for all i this can be easily probe.

So, if we use that. So, this is basically less than equal to 1 plus 1 plus n by m 1 plus n by

m into like this. So, this n by m is basically alpha this is 1 plus alpha into 1 plus alpha

into 1 plus alpha into 1 plus dot dot dot dot. So, now, we have the expression like this is

less than basically 1, so this is basically 1 plus alpha plus alpha square plus alpha cube I

mean we can say less than now this basically 1 by 1 minus alpha since alpha is less than

1. This is the power series, this is the some infinite some, this is 1 by, so this is the probe.

So, expected number of proof for a unsuccessful search in a open address hash table is

basically 1 by 1 minus alpha. So, what is the meaning of this? So, this is the 1 by 1 minus

alpha.

(Refer Slide Time: 11:59)

So, now suppose our table is half full. So, suppose our alpha is 50 percent so that means,

our table is half full. So, if we have hundred slots suppose there are 50 keys half full. So,

alpha is 1 by half 1 by 2. So, then what is this value than 1 by 1 minus alpha is basically

2 so that means, we need just two probes for an unsuccessful search, but what happen if

the table is 90 percent full, I mean this is 1 by this is 0.9, so 9 by 10, if the table is 90

percent full then what is 1 by 1 minus alpha this is basically 10. So, if the table 90

percent full then we need to have 10 attempt 10s probes for an unsuccessful search.

So, this is quite obvious because if we have 90 percent full means if there are 100 slot

and if there are 90 keys and which are distributed about this slots then it is almost loaded.

Then for a search key which is not there in the table we need to have the 10 probes for

this. So, this is quite, so this is the analysis of this open addressing and it is good in the

terms of this handling the collision because collision will be there in the hash function

we cannot say you can construct a hash function there will be no collision because hash

function this doming size is big then the co doming size. So, there has to be collision. So,

collision this is the one way we can handle the collision by using the open addressing.

So, now we will start what is called universal hashing or universal hash function.

(Refer Slide Time: 14:07)

So, to start this we will talk about a weakness of a hash function this came from this

weakness of a hash function. So, suppose there is a computation you have team a team b

suppose IBM came to your place and announce a competition to have a hash function to

build a hash function. So, they are going to use this for their or for their often hash

function is haven use in compiler operating system. So, suppose they announce a

computation to have a hash function, so you develop hash function and b team develop

another hash function and you both submitted the hash function to IBM.

So, now, what IBM will do IBM will give your hash function to b and your hash function

to team a and ask for a, ask to find set of keys where it is colliding. So, it is always

possible to have this because we know there will be the collisions.

So, if we have time we can always. So, given a hash function, given a hash function h

which is basically function form, so one can always construct a portion of the key where

it is collide a because if you have a time you can try for all possible keys and then you

can just have this key which is basically for all values it is colliding into same slot. So,

and you have to in the you have to in the computation. So, you obviously, will try for all

possible key for your opponent code and you will come out with the such a key and you

will submit this to the IBM that this is the set of keys were my friends code is not

working that and your friend is not seating ideal. So, they are also trying to find out a set

of keys where your code is performing bad. So, that is can be possible because if you

know the hash function in hand then you can try for all possible keys and then you can

come with some portional where you your code is performing badly.

So, this is a fundamental weakness hash function. So, to avoid this weakness, so one can

always construct this, this h such that h of k is always going to be a fix slot, so each

number of collision. So, now, to avoid that how we can avoid this scenario how our

friend cannot our friend or adversary cannot come with some I mean cannot come with

some input where my code is performing bad. So, this type of thing we did in a quick

slot if you remember in the quick slot if you know the position of the p board element the

say in our original version of the partition we are choosing the first, had a first element as

a p board element.

And then if we put the minimum or maximum in the first one then we are always getting

the worst case. So, we can even if we know the position is the third element third means

not third smallest third position index third then also one can put the minimum maximum

in the third element always and can get a input can construct a input where it will give a

0 is to n minus 1. So, if we know the position of the p board element then we can have a

example where our code is performing bad. So, to avoid that what we did in the quick

slot we did a randomise choice of the p board element. So, we choose the p board

element randomly position of the p board element randomly from the given adding. So,

here also we will do the same thing.

So, to avoid this we have to choose a hash function randomly from a collection of the

hash function. So, this is the way we can avoid this weakness because if we choose the

randomly hash function then our friend is not knowing which hash function we are going

to choose at the wrong time because this choose is at the wrong time. So, nobody can

come with some set for which it will perform badly because we do not know which hash

function we are it is going to choose randomly. So, we have a collection of a hash

functions we are going to choose hash function randomly. So, that is the idea behind this

universal hashing.

(Refer Slide Time: 19:30)

So, let us talk about this little more. So, this is to overcome this weakness. So, random

choice of the, random choice of hash function from a collection of hash function, so that

collection has some property what is that suppose we have a collection of hash function,

this is a H. So, H is basically collection of hash function it is the function such that u

cube. So, we have, so we considered set of all hash function I mean the collection of

hash function such that among this collection suppose there is a portion which is referred

as a bad portion that in the sense now if we chose a hash function from this portion then

there will be collision; that means, if h is coming from this. So, bad is basically, so if we

choose two keys.

So, this is the keys set if we choose two key x y, x and y then if we choose a hash

function which is x not equal to y if you choose a hash function from the form this bad

potion then there has to be collision so that means, bad means it is basically subset of H

such that h of x equal to h of y for all x not equal to y. So, this is called bad portion; that

means, if our hash function is coming from this potion then there as to be collision for

any two key any two distinct key, if we choose any two distinct key then definitely there

will be colliding into the there will be the collision. So, this is called bad portion I mean I

refer this as a bad portion because it is giving as a collision for sure.

Now, if the cardinality of bad portion is basically cardinality of H by m. If the cardinality

of this set that mean cardinality means number of element in this set is basically 1 by m

fraction of the total then this collection is called universal collection. If the cardinality of

this bad portion is 1 by m fraction of the total n is the number of slots, 1 by m fraction of

the total then this collection is called universal collection of hash function and if we

choose a hash function from this collection and that hash function is called universal

hash function. So, now, we will talk about why this universal hash function is good. So,

the bad potion is the 1 by m fraction of the total then this collection is called universal

hash collection and if we choose a hash function randomly from this collection then it is

called universal hash function or universal hashing.

So, next we will talk about why this universality is good why you should take this hash

function randomly from this collection. So, that is that is the next topic.

(Refer Slide Time: 23:20)

Next we will talk about why universality is good universality is good. So, this we will

proof by a theorem again. So, this theorem is telling let h be a hash function chosen

uniformly at random equally (Refer Time: 23:58) at random from a universal set h of

hash function all hash function and suppose h is use to hash in arbitrary key n keys into

m slots. Then given a key x, given a key x we have expected number of collision with x

is less than n by m which is basically the load factor and this good because if we even we

cannot expect we are expecting the number of collision is less than n by m which is the

load factor and that is good.

(Refer Slide Time: 25:49)

So, how to proof this? So, to proof this we need to use some indicator random variable.

So, we choose the hash function from this universal set universal hash function set

uniformly at random. So, we denote this random integral random able C xy is basically 1

if h of x equal to h of y and 0 otherwise.

Now what is the probability of C xy? Is 1, is basically 1 by n because we are fixing x and

it will colliding to this, so we are choosing the hash function from this universal set. So,

this is our H and this is the bad portion and the cardinality of the bad portion is

cardinality of H by n. Now if we have a x now if we choose a y which is not equal to x

now what is the probability that collision. So, pro collision will happen if we choosing

the hash function from this. So, size of this is H by m and size of total is H. So, the

probability that there will be the collision is 1 by m basically because H by m divided by

H. So, it is basically 1 by m. So, this is the probe, so expected value of c of x is basically

1 by m.

Now, we are looking for expected value of C of x and C of x is basically summation of

what, C of x y where y is not y is t minus x. So, this is we are looking for and this we

want to show is less than 1 m. So, this is basically we can take the expectation inside. So,

this is basically expectation of C of x y and y belongs to; now this is basically 1 by m,

this basically 1 by m. So, this is n minus 1 by m this is less than n by m. So, this is the

probe. So, expected number of collision is 1 by m. So, that is good. So, expected number

of collision is basically n by m. So, this is the load factor. So, the universal choice is

good. So, what is the universal hash function? We have a collection of the hash function

along this collection if the bad potion is just 1 by m fraction of the total and then if from

this collection total collection if we choose a hash function randomly, uniformly equally

likely and if we use the hash function for our hashing and then this hash function is

called this choice of a hash function is called universal hash function.

So, in the next class we will construct some universal hash function.

Thank you.

