
An Introduction to Algorithms
Prof. Sourav Mukhopadhyay
Department of Mathematics

Indian Institute of Technology, Kharagpur

Lecture – 21
Hash Function

So we will start the hash function will talk about hashing. So, the problem comes for the

what is called symbol table problem.

(Refer Slide Time: 00:29)

So, what is the symbol table problem? Basically we need to store. So, T is the table

which is holding. So, symbol table T basically holding n records. So, we need to store the

n records. So, what are the record basically? So, record is having few fields and which is

say x is the pointer pointing to this record, and among this field there is one field which

is referred as key of x which is basically unique and remaining are some other data field

may be satellite data or something called so, but one field is unique identification of this

record. So, this is one record, this is the record. So, may be this is a student record. So,

student has roll number name age c g p a s g p a address.

So, these are all field, but we need to find out one field which would be use for unique

identification of the student may be student roll number or student pan card number. So,

that is the key of x. So, the problem is to maintain n records. So, we need to store n

records in a table. So, that is the problem. So, that is called symbol table problem. So,

now, we need to have a data structure to store to maintain this record, such that we

should able to perform few operations.

So, what are the operations on T? So, basically operations are basically three basics

operation insertion. So, we should able to insert a record in the table and we should able

to delete a record from the table. So, this two is the dynamics, this two will make the

record dynamic. So, basically we have dynamic state of records. So, we have already

seen one dynamic set where in the priority queue that heap when you talk about heap

data structure to which is basically the implementation of the priority queue.

So, there we are having a set a which is a dynamic set. So, any point anytime anybody

can join and anytime anybody can leave. So, we should able to have that query

maximum of that set, if it is max we take max heap or minimum of that set or we should

able to decrease something. So, this way, this is basically the make this set dynamic. So,

we have a record set of we need to maintain set of n records, and this set is dynamic in a

sense that any point of time anybody can join into that table or anybody can delete and

we should able to search a record that is very important query.

So, we should able to search a record. So, key value is k. So, given the key value k we

should able to find whether that record is there or not. So, given a student id we should

able to find out the student record is in our data base or not. So, student record is there in

our table or not. So, this is the problem. So, this is the problem called symbol table

problem. So, we need to have a data structure for this. So, we need to store the n record

in such a way that we should able to perform this operations.

So, we should able to insert a new record, we should able to delete a record the this two

operation makes this say dynamic and we should able to search and this should be in a

faster way. So, we need to have a data structure for this. So, let us just think about what

is the data structure we can use for this. So, let us start with the very simple data

structure, but very powerful array simple array. So, this is called direct access table,. So,

here we are assuming the keys are coming from some set of values.

(Refer Slide Time: 05:06)

So, we are assuming that the keys are coming from this set 0 1 up to m minus 1. So, this

is the. So, maximum value of the key is basically m minus 1. So, this assumption is

required. So, then basically we set an array it is simple array m dimensional array like

this. So, we basically have an array. So, this is T 0, T n minus 1 and this is direct access

means. So, now this array, if a record is there in the table, then we put that value on other

way sort.

So, T of k is basically the record we got if x belongs to K and key of x is basically small

k. So, and otherwise it is nil. So, basically or we can have a 0 1, 0 1 bit and, but. So, we

put this 1 if the corresponding say this is 5, if say suppose this is some at some time our

T our record set is this say 5, 2, 3, 6 suppose this is our record set. So, 5 then 3 must be

here. So, 3 these are 6.

So, these are all one then say this is 2 2 2 1 0. So, these are all 1. So, this is just a bit

vector 0 1. So, if that particular record is there key value then we put it one otherwise we

put it zero. So, that is it very simple data structure this is called direct access table. So, 0

1 bit we can just maintain this array by 0 one bit if the record is, but somehow we need to

have some information about the record where from we can get. So, we can store some

pointer of that record. So, this will indicate the record is there are not.

If the record is there we can have some pointer to access that record, but anyway those

are implementation issue, but we are just concerned about the presence or absence of the

record. So, if the key value is the key value 5 is there so; that means, we have a record

present whose key value is 5 so; that means, this is one and then we can maintain a field

over here, which will give us the exact address or the pointer where we will get the face

the record I mean the whole record whole data ok.

So, this is the idea, this is the idea of the direct access table now if we use this simple

data structure, now what is the time complexity for those operation how to insert a

element, suppose we want to insert say 10, we want to insert a record whose key value is

10.

(Refer Slide Time: 08:31)

So, what will do? We go to this 10 and we put it one and somehow if we are maintaining

that we will put a x over here, that will corresponding to this record. So, that is basically

linear time operation I mean not linear constant time operation.

We are going to that particular field and we are putting the switch on that is it. And

deletion is also similar way if we want to delete say 5. So, what we are doing? We are

going there we are putting 0 we are making this empty. So, deletion is also very constant

time and searching a record suppose we want to search a record whose key value is say

3. So, what we do? We go to that position go to that array position T of. So, search k say

T of k now if T of k is o1.

Then we got the record and we somehow if we have the information about the record

physical record we go to that position and we get the record. So, T of k depending on the

value of T of k, if it is 0 then the record is not there. So, it is simply say no record is not

there or if the T of k is one we got the record. So, this is the search. So, search will also

take theta 1 time. So, this is the this is all are constant time operation this operation can

be done in constant time.

So, this is very simple data structure, but very powerful this is just a 0 1 bit vector, but

these has a problem this data structure has a problem in the sense that the memory

problem; because suppose say we know there will be number of records will be less.

(Refer Slide Time: 10:36)

So, may be maximum we can have 6 7 record say or something more, but the size of the

record is more. Suppose we have at some point of time we have this size, so 2 3 9 9 9

and 4.

So, this is the at some point of time this is the situation snapshot of the set dynamic set.

Now we are allowing the record size to be this. So, for that we need to maintain the array

of this many long size although we have only. So, 9 9 9 may be longer than that, but we

have only using few bits. So, that is the memory problem. Memory problem because if

the value is more if the value of the record key value of the record is more although the

number of records is less then it is the wastage of the memory.

So, this is the major drawback of this simple array data structure, although this is very

powerful this is just a 0 1 bit switch on off simple very simple data structure, but this is a

problem with the value we are allowing for this key value. If the key value is we are

allowing more then we need to maintain a this is statically static allocation this array. So,

we need to have this data structure, we need to have the array size up to this the

maximum value we are allowing for this key value.

So, this is the drawback although our number of record is less. So, to avoid this

drawback what is the solution is to have a function which is called hash function.

(Refer Slide Time: 12:18)

So, basically if hash function is a function from u to this set. So, suppose we have. So, u

is the set of. So, this is the universe of the key, universe of key and this is the slots I

mean this is the table size. So, we have say table of. So, there are m slots.

So, we have a table or this is a simple array and this is the universe of the key. So, set of

all possible keys this is u. Now hash function is a mapping from u to this set. So, if you

take any key of form here and if we apply h of this k it will reach towards a slot over

here say i, i th slot. So, this basically h of k is i. So, any such function is called hash

function. So, it is basically taking a key and it is giving us a slot basically, it is giving us

a value from 0 to suppose we have given.

So, this is we have given we have given we are allow to have table size up to m. So, 0 to

m minus 1. So, our hash function will be we take a key from here and it will map to a

particular it will map to a slot from 0 to m minus 1. So, any such function is called hash

function. Now suppose we have a hash function then how we can maintain a record. So,

so let us draw this ok.

(Refer Slide Time: 14:30)

So, this is a function from key to this say 0 to m minus 1 and this is the set of all possible

keys and this is the set of keys of our interest.

So, this the key set we have so far. So, here we have some k 1, k 2 some keys are there, k

3, k 4 like this. So, now, we have to maintain that stable. So, what we do we apply the

hash function on k 1 suppose it is mapping here. So, h of k 1 is basically one say this is

1. Now k 2 say h of k 2 is basically say three something like that. So, this way now h of k

k 3 is basically say some slot here i th slot say i. So, this is basically h of k 3 is i now

suppose h of k 4 is basically say some slots here.

So, h of k 4 is say m minus 1 something like that. Now suppose we have a k 5 whose has

value is say this. So, suppose h of k 5 is also mapping to the same slot i. So, then we

have a problem and this is what is called as collision, this situation is referred as

collision. Collision means suppose we have a 2 key which are going to map into a single

slot and that is quite possible because if the slot is if this set is small and if this set is

bigger.

So, if we have a function say h is a function if we have a function from a bigger set to

smaller set. So, then there has to be collision. So, collision is quite natural in the situation

of the hash function because usually this set is smaller set. So, basically hash function is

basically as a compression function. So, we have a big length input. So, we convert into

small than output. So, that is the compression function. So, since this is a smaller size

this co domain, this is the domain this is the co domain this smaller. So, they are has to

be collision ok.

But now the question is how we can handle this collision. So, collision will be there. So,

how to handle this collision because here h, so h 3, the k 1 is here k 2 is here k 4, sorry k

2. So, k 3 and k 5 both is collating to the i th slot, but they cannot sit in the single slot

here. So, then what is the solution. So, we have to do some sort of chaining over here.

So, because there are because this is a position for only one guy this is a room for one.

So, we can have a something what is called chaining or linked list. So, k 3 then we can

have k 5. So, this is called chaining method to handle the collision. So, this is basically

linked list, if a slot is containing more number of keys then we will put that outside the

table will put a chain linked list, this is basically linked list. We will put a linked list

outside the table. So, this is the way we just handle the collision ok.

So, if there are another say k 7 is also if say k seven is also collating here if the k 7 then

we have a k 7 over here like this. So, if a slot is containing more than two keys I mean

more than one keys, then we have to use this chain we have to use the linked list for this.

So, this is the collision. So, say for example. So, now, this chaining is a method to handle

the collision. So, now, we want to analyze this chaining method how good this is ok.

(Refer Slide Time: 18:55)

So, this is the analysis of chaining. So, chaining is the method to handle the collision. So,

now, suppose there are m slot 0 to m minus 1, and suppose there are this is the k the

suppose there are k keys n keys there are n slot m n keys. So, so m is the number of slots

and n is the number of keys. So, now, it is a k 1 k 2 k n. So, now, among this if there is a

collision suppose this slot i th slot having collision say 52 say 55 96 like this.

So, all of this h of 52 is equal to i is equal to h of 55 these are the key value h of 96 all

are mapping to same slot. So, this is basically the chain in that slot if there are say 3 keys

are collating there. Now what is the worst case of this, now how to search key? Suppose

we want to search a key suppose we want to search say 96 is there or not. So, what we

do? We apply the hash function on it. So, it will it will first map to the i th slot then we

know there is a chain.

So, we have to we have to read the chain basically. So, basically we are reading the we

are just scanning the chain. So, that is the way we search a key. Now what is the worst

case for this chain? So, worst case is now suppose all these elements are collating in a

single slot. So, there are n keys all are collating here then this is the worst case then the

search time will be order of n because if it is collating in to this slot then we have to

because all are collating in the same slot. So, there is a chain of size n ok.

So; that means, when you search if it is if that key is collating here we need to search this

whole list and this list is not sorted we are not going to sort this list then it will take some

more time to sort. So, it is just a unordered list linked list. So, we need to search our key

in this linked list. So, that will take linear time that will take the time of the depending on

the size of the list if the size of the list is linear the time complexity is linear. So, that is a

bad hash function. Bad hash function in the sense that everybody is collating in the same

slot.

So, there are n keys all are collating in the same slot that is a bad hash function. So, what

is the good hash function? If we have uniform distribution of the keys over the slots, so,

there are n slots. So, if n slot is distributed over this if there are n keys, if n keys are

distributed over the slot uniformly. So, then n by m is basically what n by m is basically.

So, there are n keys n slot if there are 100 say keys and if there are 10 slot. So, n by m is

10.

Basically then 10 is the number of keys per slot expected number of keys I mean or the.

So, this is basically the number of keys per slot. So, this will happen if our hash function

is such that it is distributing the key over the slot uniformly, it is not that all the keys are

going to a single slot it is just we have n keys it is distributing the keys among the m slot

uniformly. So that means, each slot will get n by m keys. So, this is called load factor this

is referred as alpha this is called load factor ok.

(Refer Slide Time: 23:48)

So, this is a condition this is a criteria of a good hash function. So, a good hash function

should such that it should distribute the key. So, it should. So, it distributes the key

distribute the keys uniformly over the slot. So, there are n keys m slot. So, each slot; that

means, each slots should get same number of keys i mean the distribution is. So, given a

key, it will be in one of this slot its probability is 1 by m it is equally likely.

So, then this alpha is the load factor n by m, alpha is the expected number of slot or

expected number of keys per slot. So, in that case if we have such a hash function in that

case search time will be how much. So, for search. So, you want to search a key. So, to

search what we do. So, this is a say key we are going to search. So, we first apply the

hash function on this. So, this will map to some slot i th slot ok.

Now, we know in the i th slot there is a linked list or chaining and this size of this chain

is alpha. So, we have to just scan this. So, what is the time complexity for this? So, time

is basically 1 plus alpha. Since one is the time to apply the hash function and then this

alpha is the basically the load factor; that means, the number of keys per slot now if our

hash function is a good hash function then this is the scenario and now if alpha is order

of one.

So; that means, if the n is order of m or n is order of n then alpha is 1 then this will be

constant time. So, if our hash function is a good hash function in the sense that it

distribute the key uniformly over this slot then alpha will have a alpha is the expected

number of keys per slot then this is the time for searching a key or insert a key because

we first apply the hash function this will take one, and then plus alpha is the size of the

list we have in that particular slot.

So, this is the idea of the hash function and this is collation is there and collation can be

handle by the chaining, and next class will talk about how to construct such hash

function. So, that it will be distribute the key uniformly over the channel. So, while we

construct the hash function this should we should keep this in our mind that it should

distribute the keys uniformly over the slots.

Thank you.

