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Worst Case Linear Time Order

So we have seen the select algorithm and randomized select algorithm where basically

the problem is to find the i th smallest element. Now we have seen that depending on

because basically we are using the quick sort partition algorithm. So, basically depending

on the partition the pivot element we have the we it partition the array in to two parts. So,

depending on this it will give us the time (Refer Time: 00:50) see, but in the worst case

always it is 0 is to n minus 1 in the worst case. So, far we have seen.

So, now we in this lecture we want to talk about a guaranteed I mean the worst case

linear time; time complexity for finding the i th smallest element and this is guaranteed

worst case. So, this was invented by this people Blum Pratt I think Rivest 4 scientists and

Trajan.

(Refer Slide Time: 01:20)

So, in this  in the work we have.  So, that  was in I  think 1973. So, this  algorithm is

proposed by this 4 scientists in 1997. So, idea is to basically their idea is to generate a

good pivot. So, idea is to generate a good pivot recursively.



So,  what  do you mean by good pivot  good pivot.  So,  that  pivot  means it  is  always

minimum or maximum so that means, it will be always partitioning all this 0 is to n

minus 1. Now good pivot means if we can ensure that some portion of the element will

be less than x, some portion of the element will be greater than x. Maybe it is very little

portion 1 by 10 is to 9 by 10, then also we have seen we are lucky then also we have seen

we have linear time. So, if we can ensure the pivot is good in the sense that if you can

ensure there are certain portion may be very small amount, even it could be work for 99

by 100.

So, if we can ensure that a certain portion is less than x, and certain portion is greater

than x then that choice of pivot is good pivot. So, the idea is to get such a pivot. If we

can get such a pivot from this array,  so we will  use that pivot and then we call  the

partition and then obviously, if we know that there are some portion guaranteed, there are

some  portion  will  be  left  side  and  some portion  will  be  right  side.  If  this  thing  is

guaranteed then if we call the partition then obviously, it will be array will be like this.

So, it is guaranteed that some portion will be here some portion will be here.

So; that means, when we call again in the recursive call, they this then will go for here

again in this subsequent recursively we are calling this divide and conquer technique,

even in this call, even if we can choose again a good pivot. For this sub call then also

again it will partition into certain portion over here should not. So, we want to avoid the

0 is to n minus 1 case, and that can be avoid only by choosing a good pivot that will

guarantee that there are some portion over left side some element less than x and some

element greater than x.

So, the idea is to choose how one can choose a good pivot. So, that is the their idea. So,

if we can choose a good pivot which ensure that and that choice has to be recursively,

that ensure that that guaranteed there will be some elements which are less than x, there

will be few elements which are greater than x. Then we choose that x as our pivot and

then we call partition, and then that will be that partition will be divide the array into like

this portion not that 0 is to n minus 1. So, how we one can choose a good pivot. So, for

that what they did.

So, we have given array. So, what we are doing? We are dividing these array into 5

element groups.



(Refer Slide Time: 05:03)

So, we have given the array of n elements. So, we are dividing into 5 element groups like

this. So, we have we are grouping the elements into 5 element groups like this, may be in

the last one we have only 3 4 element because this n may not be multiple of 5, but

anyway. So, this is the this is our we have given a array A array is form say we have a

array say 1 to n or p to q. So, we take first 5 up to 5 as a first group, second group like

this. So, we are grouping this array. So, we divide the array into 5 element groups.

Now, now what we are doing? Now we are finding the median of this group. So, this is

only 5 elements. So, we can sort it up, we can just sort the element and we can get the

median.  Suppose this  is  the median of this  group and this  is  the median,  this  is  the

median, this is the median this is the median. So, we sort this and got the middle point of

the group. So, these are the medians of this individual group now we find. So, we have

how many groups are there. So, there are n elements. So, roughly n by 5 groups are there

so that means, n by 5 medians are there ok.

So, among this, now, we have n by 5 medians. Now we find the medians of the medians

and that we will find recursively by the same function call we will come to the code. So,

now, we want to find the medians of medians. So, suppose this is the medians of median

and this is the medians of medians and these we are going to choose as a our x. So, this is

basically our pivot element we are going to choose, this is our x. Now if we can choose

this as a pivot then why it is a good pivot so that means, what is the guarantee.



So, good pivot means it will guarantee that some fraction of the element will be less than

x, some fraction will of some portion of the element, some portion will be greater than x.

So, this we have to argue. So, this is the medians of medians. So, now, we will follow

this notation. So, this is median of this. So, this is less than this, this is less than this. So,

we will use this symbol as less than. So, this means this is lesser and this is bigger, we

can use this symbol lesser by this. So, this is the medians of medians. So, this is lesser

now there this is lesser than this, like this, like this ok. 

Now this is the median of this group, so that means, this will be lesser than this, this will

be lesser than this and this is like this. So, this is lesser this is lesser. So, like this we

have.  So, this is the median of this group. So, this  is  the relation we have less than

relation. So, this is the median of this group. So, this is lesser this is lesser like this. So,

we continue with this like this like this like this. So, we can leave the last one like this.

So, now, if we look at all the elements over here say this element, now this element is

less than this because this is the median of this group this element is less than this.

Now, this is the median of then now this element is less than this so; that means, this

element is less than this. So, if you take any element over here they are basically less

than equal to x. So, all the elements over here are basically less than or equal to x, and

that is guaranteed. Because if you take any element this element this element is less than

this, this is the median of that group and this element is less than this because this is the

median of the medians so; that means, this element is less than this. So, this is true for

any element less than equal to. So, if you take this element this is the median of this

group. So, this element has to be less than this. So, this is the less than symbol we have

use. 

So, this is the portion where all the elements are less than or equal to x, and similarly this

is the portion. So, this is the portion if you take this element say, this element is greater

than this and this is greater than this. So, these element is greater than this. So, this is the

portion where all the elements are greater than or equal to x, because by this relation if

you take this element, this element is the this element is less than from this group median

and this median is less than from the medians of the medians. So, this element is less

than this.



So, we have a portion guaranteed we have a portion which is less than x, we have a

portion which is greater than x. Now what is the size of this portion? Now size of this

portion is basically. So, there are n by 10 medians, n by 10 groups now this is almost half

of their. So, size of this is basically sorry n by 5 size of this is n by 10. So, among this n

by 10 there are 3 elements each from each group. So, there are n by 10 such groups are

there, which are basically i mean have a portion of which is basically less than x and how

many of them? 3 of them.

So, basically 3 n by 10 is the size of this 3 n by 10 is the size of this portion, where

elements from that that group that portion is less than equal to x, and similarly here also

the size of this portion is 3 n by 10. So, basically x will be sitting somewhere here. 

(Refer Slide Time: 12:35)

So, this is the. So, this is 3, so 3 n by 10, and this is also 3 n by 10, and if we. So, x will

be  somewhere  in  this  here  I  mean  we  do  not  know  where  will  be  x,  but  this  is

guaranteed.  So, this is the good pivot because we are guaranteeing that there will  be

some portion which are less than x, 3 n by 10 that portion size is 3 n by 10 and there will

be some portion which is greater than x, 3 n by 10 and x will be sitting somewhere here.

So, now, if we take that x as a pivot and then if we call the partition, then it will be like

this. So, x will be sitting somewhere here and this. So, this is the guaranteed that the

partition would not be 0 is to n minus 1. So, we are ensuring that there will be some

portion which is less than x, there will be some portion which is greater than x.



So, that if we can ensure then if we call the partition algorithm by choosing that x, then it

will not give us the worst case scenario like 0 is to n minus 1. So, it will give us some

fraction left side some fraction right side. So, that will give us the recurrence. So, we will

talk about that, but that the this is the idea. So, this is the idea to choose a good pivot. So,

this way we choose the good pivot and this. So, here also we are involving some time.

So, this should be taking consider into the algorithm. So, that will write the pseudo code

for this, but let us just recap this. So, this is what we are doing we have a n element.

We are partitioning we are dividing the element  into 5 element  groups,  and then we

choose the median of each groups maybe there are 5 elements. So, we can just simply

sort this and we can find the median. And then we find the medians of the medians. So,

we will write the pseudo code for this and then that we are going to choose as a pivot

element  and then we call  the partition by taking this x as a pivot and then this  will

partition into it will avoid the worst case scenario and then we have the same select.

So, we will find the rank of this and then if the k is less than let us write the code. So,

this is the idea behind to choose a good pivot recursively. So, let us write the pseudo

code for this algorithm.

(Refer Slide Time: 15:31)

So, this algorithm we referred as say this is also select, but capital select. So, we have n

elements say 1 to n. So, what we are doing let us write this in English description. So, we



divide the array divide the n element into group of 5 element; groups of 5 and then we

find the median of each group of each 5 element group then.

So, we got the median of the each group then we find the medians of the medians by

using the same select algorithm. So, that is the recursive call. So, use the same select to

find the medians. So, we have how many elements how many medians. So, we have n by

5 groups so. So, now, we have n by 5 medians. So, now, we want to find the median of

the medians. So, we call the same select to find that. So, we recursively call the select

same function to find the median and that is our pivot x of the n by 5 group of median.

So, we have medians of medians; I mean here we can use the lower ceiling because n

may not be a multiple of 5 median to be the pivot. So, x is this medians of medians is our

pivot and that we are finding using the recursive call of this same select function. So, we

will talk about time complexity. So, now, this is our pivot element X. Now we use this

pivot and then we call the partition algorithm and so, we partition the array around the

pivot sorry we partition around the pivot X and then let k be the rank of X. So, if we call

the partition it will return the position. So, suppose it is we call the partition.

So, suppose this is this is 1 to n, but in general it is p to q. So, it will return the position

of x and then r minus p plus 1 is basically our k. So, k is the this is the i th r th this is the

index of the pivot element. So, r minus p plus one is basically this is the rank of x, our x

is sitting in the sorted array. So, now,. So, this is the r will be the r is coming from this

partition algorithm and now. So, we know the rank of x now the code is same, if i is

equal  to k then we are lucky we return x,  because we got the i  th  smallest  element

otherwise if i is less than x then we have to call the select again.

So; that means, r is less than x means we have to look at the. So, it is dividing a array

into two part, we have to look at the left part of the array. So, A recursively call select

from a. So, if it is p to q. So, here it is say p to q and if the partition is returning r. So, this

is basically p to r minus 1 comma i else, if i is greater than k then we call the select. So,

we have to look at the right part of the array. So, this portion of the code is similar to the

select algorithm. So, only thing here difference is the choice of this pivot element. So,

this is the. So, this portion is similar.

But only thing this is the way we choose a good pivot. So, that is the idea. So, we have to

choose a good pivot in order to avoid the that partition 0 is to n minus 1. So, this is the



way we choose the good pivot. So, let us write the time complexity of this. So, how

much time  we are  spending here.  So,  for  that  let  us  just  write  the  T n be  the  time

complexity for this run time. So, we divide the element into 5 element groups and find

the  median.  So,  how  much  time  we  are  spending  there.  So,  basically,  we  have  n

elements.

So, we are divided into 5 element groups sorry. So, how many groups? So, n by 5 and

each group we are finding the median. So, we can just sort this 5 elements excuse me,

only 5 elements. 

(Refer Slide Time: 21:51)

So, this will take constant time. So, there are n by 5 such groups. So, this is a theta of n.

So, now, recursively we call.  So, now, we have we need to find the medians of this

medians median of the medians. So, that for that we are again calling the same select. So,

that will take us theta of n by 5 a T of n by 5 because we are calling the same function

recursively T of n by 5. So, then this step will take the partition, partition will take the

linear time theta of n, now if you are lucky enough we will got this as x, but otherwise

we have to go for either left part of the array or right part of the array this is the conquer

step. So, we have to call either left part of the array right part of the array. So, for that

what is the size of that maximum size? Maximum size is basically.



(Refer Slide Time: 22:57)

So, it is basically dividing the array into two part, we know that this part is 3 n by 10 and

in the worst case suppose x is sitting here, and we are going to call the right part of the

array.

So, this is roughly 7 n by 10. So, this is basically in the worst case this is basically T of 7

n by 10, because in the worst case we have to go to the right part which is the biggest one

this is the worst case analysis.

(Refer Slide Time: 23:38)



So, the T n is basically sum of this. So, T n is basically. So, T n by 5 plus T 7 n by 10

plus this theta of n theta of 1 theta of n all come. So, this is the recurrence we got for this

select algorithm. So, now, we have to get the time complexity for this, we need to solve

this.

So, how to solve this? So, we can try for recursive tree to get the solution otherwise we

can try for substitution method to get the solution. So, let us try for substitution method.

So, we are thinking that T n will be big o of n. So, this is our assumption so that means,

we are thinking that T n must be less than equal to some c n some c constant. So, now,

we need to take a substitution method. So, we need to take a induction hypothesis. So,

we assume T of k must be less than c of k, for all k less than n and then we need to prove

that T of n is less than this.

Now, we have this recurrence now this is basically less than. So, this is n by 5 which is

less than n. So, we use this induction hypothesis this is c n by 5 plus we have again 7 n

by 10, which is also less than c n by which is also less than n. So, we have this n by

(Refer Time: 25:25) I put this we can just write c 7 n by 10 plus theta of n. So, this is

basically what this is basically 10 into. So, c n we take common. So, this is 2 plus 7 plus

theta of n. So, this is basically what? So, its nine c n by 10 plus theta of n. So, this is

basically you can write is at.

So, we want to write this we want to show this less than c n. So, to show this we have to

write this to be c n minus of some quantity and that quantity has to be positive. So, what

is that quantity? So, basically c n by 10 minus theta of n. So, now, this. So, we choose c

in such a way that this will be positive. So, c is in the our hand we can choose c such a

way this will be positive and then if once this is positive this can be written as c of n so;

that means, this is established. So, by the help of so this is the substitution method.



(Refer Slide Time: 26:48)

So, we can just write c of n is T of T of n is less than c of n. So, this imply by the

substitution method theta of n. So, that is the worst case runtime for our select algorithm

and this is not a randomized algorithm, this is just a this is to get the pivot as a good

pivot,  we  choose  the  pivot  good  pivot  in  that  way.  So,  this  is  the  guaranteed.  So,

guaranteed worst case run time is linear by choosing that even we can establish this by

using the recursive tree. So, one can draw the recursive tree and can see that the run time

will be also linear.

So, this is the worst case linear time order statistics finding the i th smallest element, and

this is the guarantee this is not the expected this is not the average case this the worst

case linear time algorithm for finding the i th smallest element.

Thank you.


