
An Introduction to Algorithms
Prof. Sourav Mukhopadhyay
Department of Mathematics

Indian Institute of Technology, Kharagpur

Lecture – 16
Linear Time Sorting

So, so far we have seen the comparison based sorting algorithm. And we have seen that,

we have proved that by the help of decision tree that if you are using comparison based

sorting algorithm we cannot go, we cannot go faster than the n log n. So, now, we talk

about linear time sorting algorithm where we will not do comparison between the

elements, but we will see the value of the element based on that we will do the we will

do the sorting so this is.

So, we will discuss 3 such sorting algorithm one is counting sort or addict sort bucket

sort. So, let us start with the counting sort, this is.

(Refer Slide Time: 01:04)

So, this is on example of linear time sorting algorithm. So, but this is not a not a

comparison based sort, comparison based sorting so; that means, that means, no

comparison between the element, no comparison between the element. So, we are not

doing any comparison between the elements.

So, that is the basically, so that is how you could reduce it to the linear time. So, this is,

so for this we need to have some assumption like, so suppose this is our number.

(Refer Slide Time: 02:11)

So, this is the input, what are the input? Input as say A array of numbers. And here we

are assuming the value. So, we have to concern about the value of this number. So, we

have to bound this numbers are coming from this range.

So, we have to fix the range of this number. So, that is also part of the input. So, that is

basically where A i is coming from k. So, k is the maximum value we are allowing this

number to take. So, this is also part of the input so; that means, we are fixing the range of

the input. So, that is one of the, one of the criteria of this sorting algorithm. So, we have

to, we have to mention the range of this numbers, otherwise we cannot sort this. Because

basically based on that we need to take the auxiliary array.

So, the output with, so this is the input. Output will be in a B array which is basically

sorted. What we need to take a, extra storage or extra or auxiliary storage here. So, this is

the, these are basically you can say bucket auxiliary storage. So, this is denoted by C and

this will be based on this range k. So, based on the value k we need to take this extra

memory. So, this is these are not; obviously, in place sort. So, these auxiliary So, this

storage also is a part of the input.

So, we need to take extra storage. So, so this is the range has to be fixed at the time of

the input. So, once we fix the range then we can allocate the memory or the storage for

that. So, this is the input output and the auxiliary storage. Now we have to write the

pseudo code for this counting sort. So, so basically the basically, we are going to sort this

number into the B array which is also of size n, but with the help of a extra another array

which is the auxiliary array C array whose range is from one to k, and k is the maximum

value of the input we are allowing the size, not the size the value input can take. Say for

example, if we have a array, A array say 2, 4, 5 and then say 11. So, if this is our input.

So, now, our k is basically 11. So, basically our numbers are coming from 1 to 11. So, k

is the maximum value we are allowing as the input. So, we are having a range of the

input. So, we are bounding the input to have for to, to come from this range.

(Refer Slide Time: 05:56)

.

So, that is one of the restriction, or one of the criteria for this so; that means, if k is 11

then. So, this we are going to sort in B array. So, B is also this 4 B array and, but we need

to take a C array of size 11. So, so C array is of size 11, C array will be 1, 2, 3, 4, dot,

dot, dot, 11 - 1, 2, 3, 4, 11. So, this is the auxiliary array we are going to, we need to take

for this algorithm. So, now, let us write the pseudo code for this counting sort. So, this k

is the range of the input. So, counting sort ok.

(Refer Slide Time: 06:48)

So, first of all we have to fill the C array. We have to initial initialize the C array by 0, C

is just a frequency. Or we can say C are the bucket and we can fill the bucket like this.

Anyway, so we will come to that. So, for i is equal to 1 to k. So, size of the C array is k.

So, we fill it we initialize, we put the count as 0. So, this is the initialization and then,

then we read the array. So, we have given the A array of size n. So, this is our A array and

this is our C array of size 1 to k. So, initialize this all by 0 and then we read this A array

and we accordingly if that we put the frequency in C array.

So, for j is equal to 1 to n, this is the A array. So, we read A j. So, this is particular j. So,

we read A j. So, depending on the value of A j. So, if this is say 2 then we go to this and

we put plus 1 like this. So, this is sort of frequency we are counting frequency of the that

particular number to So, what we do? Now we do, we do this A, of A C of A j. C of A j

we increase by 1; C of A j plus 1. So, this is just a frequency counting. So, the number of

depending on the value of the element, this is the frequency count of that element.

So, after this what we are doing? So, up to this if we just count the frequency. Say

suppose we have say input say like, this suppose we have a input. Say suppose, Our A

array is 4 1, 3, 4, 3, ok.

(Refer Slide Time: 09:18)

Suppose this is our A array. So, this is 4 is the maximum size. So, C array is 1, 2, 3, 4.

This is our C array. Now what we are doing this step we are initializing by 0, and we are

just counting the frequency. So, we first read this is 1, 2, 3, 4, 5 there are 5 elements. So,

we first 4.

So, we put it plus 1. So, this is 1 then 1, 1, this is 3. 1 this is 4 again. So, this is plus 1 2

this is 3 this is 2. So, this is the execution after this. So now, now we know that there is

only one 1. So, we can just pin the 1. So, if you put a bracket. We can just pin the 1, then

we know there is no 2. So, we will just ignore that and we know there is 2, 3. So, we can

pin this to 3 and we know there is 2, 4. So, we can pin this 2, 4 sort. So, sort it sort it. So,

should we stop here, because we just, if we just read the array, read the C, C i mean

frequency wise, that is it.

So, we can just get that sorted one, but should we stop that, stop here? No because, we

want a extra property in this algorithm. What is that? That is call stability. Stable sorting

algorithm or stability or stable sorting algorithm, we want the this sorting algorithm is

stable. Stability means it should preserve the between the equal element it should

preserve the ordering of the equal element like, like if we print just this. So, this 3 and

this 3, we do not know which 3 come first in the input. We know this 3 came first than

this 3.

So, we want in the output this 3 should come first than this 3. So, suppose there is a

small tag over here. So, these are very important for satellite data. So, if we see the

Google map some if we just capture the images. So, 2 image looks like same, but they

are not exactly same. So, for those say suppose this 3 contents is 3 point we put a tag

over here, 1 and we put a tag over here, 2 to indicate that this 3 come, this 3 came first

than this 3. So, in the output also we want this 3 should appear first than this 3, ok.

So, that is called the stability. So, stability means, the input ordering should preserve in

the output ordering, the between the equal elements. So, that is the that is called stability.

So, we want that stability. That is why we have to execute few more, we have to write we

have to do few more step for this counting sort in order to get this stability. Let us just

complete this pseudo code. So, so for this what we do? We first have the cumulating

frequency. Let us just erase this for the timing. So, we come back to this example again.

So, let us just do the for i is equal to k we will just take the cumulating frequency 2 to k.

(Refer Slide Time: 13:21)

So, we do C i basically C i plus C of i minus 1. And then we fill the B bucket like this.

For j n down to 1, for j n down to 1 what we do? We just fill this B of, B of So, basically

A j we are going to fill in this B of C of A j. So, this A j we are going to fill in B of C of A

j. And we decrease C of A j by 1 and C of A j is decreased by C of A j minus 1. So, C of

A j is decreased by C of A j. So, this is 8, this is 9. C of A j is decreased by C of A j minus

1. So, this is the bucket filling. Let us take an example. So, we take the same earlier

example.

Suppose we have this input A array there are 5 element 4, 1, 3, 4, 3. So, this is A array.

So, this is A array now. So, we take a so, we are going to fill this in to the B array. So, B

is also has to be 5 element 1, 2, 3, 4, 5. Now we have a C array. So, this maximum k is 4.

So, C is 1, 2, 3, 4. So, this is B array and this is C array. So, now, we just execute this

code. Now we fill this is the initialized step. So, we initialize this C by 0 and then we put

the frequency.

So, after this there is only 1, 1, no 0 no 2, 2, 2. So, this is the, after this frequency of C.

Now after that we have, we have to compute this C prime or cumulating frequency. So,

we can say this is C prime. So, this is basically our new C. So, cumulating frequency

means we just. So, it is starting from 2, up to 2, this plus this 1. And then, then we have

this plus, this plus this, 2 plus 3, this plus this, so 5. So, this is the after this cumulating

frequency we have this position of this array. So, this is the C array after the execution of

that loop, 4, 5. Now 1, 1, 3, 5.

So, this is our C array after this execution of this loop. So, this is meaning of this is, up to

this how many elements are there? One element. Up to this, how many elements are

there? 3 element. Up to this how many elements are here? 5 elements because, that total

5 elements are there this is the sense. So, now, this is our C array. Now we go for the

exact bucket filling by this loop. So, we start with n. So, we just look at this and we have

to put this into some of the B array. So, how we can put this? So, put it by this way. If we

go to the C of A j. So, A j is 4 A j sorry, A j is 3.

So, C of A j, so this is basically 1, 2, 3, 4. So, C of A j is basically 3. C i by A j is 3. So,

we will put it into here. So, this 3 we put it into here and we decrease this by 2. I mean

this C of A j is decrease by C of A j minus 1. So, this now this value is 2. So, what is the

meaning of this? Meaning of this is if again we see a 3, and that will going to put in this

position and that will assure the stability. Is this clear? If again we see a 3 we are going

to put it here in the place of 2 in the here.

So, that will give us the stability, and that we are doing a n down to 1. Anyway let us

complete this. So, we reduce this by now it is now this value is 2. This is the C array.

Now this is our next element, this of this loop j loop n down to 1. So, now, it is 4. So, we

go to C 4, C 4 is 5. So, we put it here this 4, and we decrease by this one. So, what is the

meaning of that meaning of that is if again we see a 4 we are going to put it in this place.

So, that will give us the stability. So, now, this is basically 4, now we are here 3.

So, we go to here now it is telling us we put this 3 in here. And we reduce this by 1 so;

that means, again if we see a 3 we are going to put it here. So, now, come here so C 1, C

1 is basically 1 and we put it here, and we reduce this by 0. So, there is no more 1 now

come here. So, this is C 4. So, we go to the C 4 it is now 4. So, we are going to put it

here this 4. And this is reduced right now 3. So, done sort it not only sorted this preserve

the stability also. So, this is stable, stable in the sense that.

(Refer Slide Time: 20:56)

Stable means, we preserve the, it is preserved input ordering, is preserving in the output

ordering. If this happen then it is called stable sorting algorithm. So, which is the

comparison based sort is stable? Quick sort? Think about it. Now if you hear this stable

because this 3 and this 3 are same. These are 2 equal element, but this 3 is coming first

then this 3 if you put a little tag over here 0.1, 0.2 So, this 0.1 is coming before then 0.2.

Even this 4 are equal, but this 4 is coming before this 4.

So, the input ordering is preserved between the equal element. So, that is the property we

want in our sorting algorithm. And to have this property we need to execute this extra

step. Otherwise we could stop at this place. This is this up to the frequency this kind of

bucketing I mean we have the buckets we are filling the buckets and then we have print

the frequency of that numbers, but we need this extra property to have achieve this extra

property which is stability we have to execute this, and this is a stable sorting algorithm.

So, now we have we want to, we want to have the time complexity of this. So, let us talk

about, we want to analysis this code. So, this is the code and now we want to have the

run time of this code, analysis of this code.

(Refer Slide Time: 22:58)

So, analysis of counting sort. Basically we do the run time analysis. What is the time

complexity of this counting sort run time? So, let us look at the code. So, so here there

are few for loops.

So, this is basically a for loop. So, this will take the order of k this the loop of size k. And

here we are initializing this so, we are in asymptotic notation this initialization will take

the constant effort. So, asymptotic sense So, that is why it is theta of k and this will give

us theta of n the filling of the that frequency, and this will again give us the theta of k and

this exact bucket filling will give us theta of n so; that means. So, what is the time

complexity then? So, time is basically, adding if we add this to it is basically, theta of n

plus k ok.

So, now what is k? K is the range, range of the elements. We are fixing the if we fix

some range say if k is order of n then the time is basically theta of n, if k is this. So, it is

linear. So, it is linear provided the range is also bounded by n bounded by sorry, bounded

by the number of inputs. So, if there are say n input.

(Refer Slide Time: 25:10)

And now we are bounding by say k is say, some c n or some constant n or something.

But if the k say n square then this is the dominating term if k is n square then the time

complexity is basically what? So, so the time is basically order of n plus k. Now

depending on which is dominating. If k is now the case one if k is big o of n, then the

time is linear. Otherwise, if k itself is equality, k is say n square, or n log n. Then we have

work then the time will be dominating by order of k it is basically, order of n square.

Which is basically worse than the comparison based sort, ok.

So, that is the, that is the condition this to be a linear time sorting algorithm if the k is

order of n. Other than that it is not possible. So, like a say 5 n 100 n something like that

some constant into n then we can have this sorting algorithm to be linear. Otherwise it is

a, depending on the value of k it will be either order of k or order of n.

So, next class we will talk about radix sort and the bucket sort, that is those 2, are also

another sorting algorithm, another linear time sorting algorithm.

Thank you.

