
Computer Architecture and Organization
Prof. Kamalika Datta

Department of Computer Science and Engineering
National Institute of Technology, Meghalaya

Lecture - 09
MIPS32 Instruction Set

Welcome to the 9th lecture on MIPS32 instruction set. In this lecture, we will be seeing

the instruction set of MIPS32 --- which means the various kinds of instructions that are

possible in MIPS32.

(Refer Slide Time: 00:39)

Broadly instruction in MIPS can be classified into load store instructions, arithmetic and

logic instructions, jump and branch, we have some miscellaneous instructions, and some

coprocessor instructions. And all instructions can be encoded in 32 bits.

(Refer Slide Time: 01:11)

Now, let us see what is this word alignment. It is alignment of the words in memory.

MIPS always requires that all the words that we store in memory must be aligned to

word boundaries; that means, must start from an address that is some multiple of four.

So, you see the first address which is 0000, it starts from here then 0004 then 0008, and

so on. So, must start from an address that is some multiple of 4.

So, the last two bits of the address must be 00, 0 – 0000, 4 – 0100, 8 – 1000, as well as

all others. This allows a word to be fetched in a single cycle. So, in a single cycle, we

access this word and we get this entire word in one cycle. This is why we say that MIPS

requires that the words to be aligned in the memory.

Now, here the first word is aligned, but see the next word it is not aligned because it is

not starting with this address it is starting with the fifth one. Similar way this word -

word three and word four both are not aligned only first word w1 is aligned.

(Refer Slide Time: 03:24)

We have been discussing about load-store architecture; what it means is that all

operations are performed on operands held in the processor registers. Only two

instructions can load the data from memory or it can store the data into the memory; no

other instruction can use a memory location. There are various types of load-store

instructions that can be used for a particular purpose; like we can load a word, we can

load a byte, or we can load a half word. In the same way, we can also store a word, we

can store a half word, or we can store a byte. By specifying whether the operand is

signed or unsigned, we can also load a half word unsigned, load a byte unsigned.

(Refer Slide Time: 04:34)

Here we have another set of instructions, which are used for accessing fields that are not

word aligned. The instruction that are used are load word left, and load word right, store

word left, and store word right. And there are some other instructions as well like atomic

memory updates for read-modify-write instruction. So, just think of an instruction that

requires to be completed fully like when we read it, we modify it and we write back at

the same go. So, we cannot have it that we read it, we update it, we do not update it. If

we read it, we have to update it and then we can store that, so those are atomic

operations.

(Refer Slide Time: 05:32)

These are the data sizes that can be accessed through load and store, but in load unsigned

we can only use byte and half word. And for word this can be done only for MIPS64, and

for store it can be done for all.

(Refer Slide Time: 05:54)

Now, we can see some more instructions; LB is load byte, this is load byte unsigned load

half word and so on. And here for an unaligned one, we have load word left, load word

right and similar way store word left and store word like right. And also for atomic

update, we have load linked word and store conditional word.

(Refer Slide Time: 06:28)

Let us move on with arithmetic and logic instructions. MIPS32 has a wide variety of

arithmetic and logic instructions that can broadly classified into the following categories.

The categories include ALU immediate, ALU with 3-operand is possible, ALU with 2-

operand, shift, multiply and divide.

(Refer Slide Time: 06:59)

So, let us see the this set of arithmetic operation this is ADDI - add immediate word. This

is ADDIU - add immediate unsigned word. This is LUI - load upper immediate. This is

ORI - or immediate. This is SLTI - set on less than immediate.

(Refer Slide Time: 07:33)

Let us take an example of SLTI - set on less than immediate, the meaning of which is if

$s2 is less than this immediate value 10, then you set $s1 to 1, else you set $s1 to 0.

(Refer Slide Time: 08:15)

We have three operand instructions, where these are add, add unsigned, and, nor, set less

than, set less than unsigned, sub, sub unsigned, xor.

(Refer Slide Time: 08:34)

For two-operand, we have these instructions CLO that is count leading ones in a word, or

CLZ that is count leading zeros in a word. So, these instructions are also sometimes

required for various programming. We have another set of instructions for rotating a

word. So, we can rotate a word right, we can rotate a word with a variable, and we can

specify that how many bits we need to rotate. We can shift a word left logical, that is, we

can do a logical shift; we can shift a word left logical, and we can specify the variable.

And similarly we can do it for shifting a word right arithmetic - shifting a word right

with arithmetic right shift; and with arithmetic right shift with some variable, and we can

also do logical right shift.

(Refer Slide Time: 09:50)

Let us move on and see multiply and divide instructions. So, the next set of instructions

that MIPS32 instruction set is having is multiply and divide. So, when two 32-bit

numbers are multiplied we can get a 64-bit product; and after division also you may have

to store a 32-bit quotient and a 32-bit remainder. So, where we will store this 64-bit

result? We have a register called HI-LO; this is a register pair. So, for multiplication the

low half of the product is loaded in LO while high half is loaded in HI. Multiply and

multiply subtract produces a 64-bit product and adds or subtract the product from the

concatenated value of HI and LO. And also divide produces a quotient that is loaded into

LO and a remainder that is loaded into HI.

(Refer Slide Time: 11:03)

There is only one exception that for the multiplication instruction which delivers the

lower half of the result directly to GPR, because it is useful for the situation when the

product is expected because when we multiply two numbers always the result may not be

64-bit, the result can fit into 32-bit as well. So, in that case is an exception with MUL

instruction.

(Refer Slide Time: 11:34)

So, these are the various instructions that I have talking about: div, divide with unsigned

word multiply and add word. So, what is this multiply and add word.

(Refer Slide Time: 11:49)

Let us see this instruction. MADD means we are multiplying with three operand here.

So, we are multiplying $s2 and $s3, and we are adding with $s1, and also we are storing

the result in $s1. Such kind of instructions are required in digital signal processing, and is

supported in MIPS32 architecture. So, we have various move from high, move from low,

you have various multiply word to a register, this is generally used multiply a word,

multiply unsigned word.

(Refer Slide Time: 12:43)

Next set of instructions is jump and branch. The following types of jump and branch

instructions are supported in MIPS32. We know that whenever we wanted to perform

some kind of branching like in a program with loops, for those we require jump and

branch instructions. We have PC relative conditional branch where a 16-bit offset is

added to PC, or in a conditional unconditional branch a 28-bit offset is added to PC.

There can be absolute unconditional branch whether absolute address can be provided in

the register, and special jump functions that link the return address in R31. So, we are

jumping from one location to another and after executing that particular location we have

to come back to the previous one. So, the value of the PC must be loaded with that return

address value.

(Refer Slide Time: 13:53)

In this context we have some instruction, this is unconditional branch jump and link.

Jump and link exchange, and these are some unconditional jump using absolute address.

So, jump and link register, jump and link register with hazard barrier. So, you will be

seeing some of these instructions when we will be studying pipelining in course of time.

(Refer Slide Time: 14:24)

So, related to PC there are some instructions: BEQ and BNE. We shall come across these

kind of branch instruction very frequently when we do some programming. And there are

some PC relative conditional branch comparing with zero. So, branch on greater than or

equal to zero, or branch on greater than or equal to zero and link. We have few branch on

greater than zero, branch on less than equal to zero. So, we have various instructions that

we can we may use for our programming constructs.

(Refer Slide Time: 15:11)

We also have some miscellaneous instructions used for various specific machine control

purposes, and they include some exceptional instructions, conditional move instruction,

some prefetch instructions are also there, no operation instructions. So, we will again see

that some of these instructions like NOP may be used in pipeline for some purposes.

(Refer Slide Time: 15:40)

Next is system call. SYSCALL is something which we will be using often in

programming using QtSPIM where we use system call which is syscall. And there can be

some instructions like trap; trap if equal, trap if greater than or equal, trap if greater than

or equal unsigned, and so on. So, these are some OS related instructions that are used if

you want to request OS for some requirement, and then the OS takes care of it.

(Refer Slide Time: 16:39)

So, these are also various kind of trap-on-condition comparing with an immediate value;

these are some of those instructions.

(Refer Slide Time: 16:51)

And this is prefetch and no operation.

(Refer Slide Time: 16:57)

Next set of instruction is coprocessor instructions. The MIPS architecture defines four

coprocessors, designated as coprocessor 0, 1, 2, and 3. CP0 is incorporated within the

CPU chip and this also supports the virtual memory system and exceptional handling.

CP0 is also referred to as system control coprocessor.

Now, these four coprocessors may not be used for all cases, but like CP1 is reserved for

floating point coprocessor. CP2 is available for specific implementations and CP3 can be

used for future extension. So, we really do not know that which kind of coprocessor we

will be using in near feature. So, for that reason we need some coprocessor that can be

available in future, and these instruction are not discussed here. So, we are just saying

that we will have some kind of instructions like coprocessor instructions.

(Refer Slide Time: 18:15)

MIPS architecture also supports a set of floating point registers and floating point

instructions that shall be discussed later.

So, we came through end of lecture 9, where we discussed the various kind of

instructions that are there in MIPS32 architecture.

Thank you.

