
Computer Architecture and Organization
Prof. Kamalika Datta

Department of Computer Science and Engineering
National Institute of Technology, Meghalaya

Lecture - 08
CISC And RISC Architecture

Welcome to the next lecture on CISC and RISC architecture. Till now what we have seen

how an instruction gets executed, what kind of instruction format is available and what

kind of addressing modes are used. So, now we will be looking into that architecture

where we can divide those sets into some groups, that is, RISC and CISC.

(Refer Slide Time: 01:06)

This is a broad classification. Computer architectures have evolved over the years. And

there are many features that were developed for mainframes and for supercomputers in

the 1960s and 70s and that started to appear as regular features on the later generation of

microprocessors. Based on that we have so many features; they are broadly classified

into complex instruction set computer called CISC, and reduced instruction set computer

called RISC.

(Refer Slide Time: 01:49)

Now, let us see how CISC and RISC architectures differ. Coming to CISC it is a more

traditional approach. So, the main features of this complex instruction set computers are

they have complex instruction set. They also have a large number of addressing modes.

They also have some special-purpose registers and flags that are used to carry out

various operations, and the instructions are not all of same length. So, they have variable

length instructions.

So, as I have already told earlier that if you have a fixed-length instruction it becomes

easy for encoding and decoding, but if you have variable-length instruction then the

encoding needs to be more complex. And it also takes more time for decoding, because

you have to know each of the bits and based on that a particular action will be

performed. So, ease of mapping high-level language statement to machine code is

possible in CISC, but instruction decoding and control unit design are much more

complex. And of course, if you have variable length instruction, pipeline implementation

will also be quite complex.

(Refer Slide Time: 03:40)

.

Now, CISC machines emerged in 60’s and 70’s --- we have seen IBM 360, 370, VAX-11

were popular in seventies and eighties. And from 1985 and till present we have Intel

architectures that use CISC architecture; it follows a CISC architecture and has survived

over generations. So, over the generation, if you see any CISC machine based on Intel;

the desktop PCs, laptops, etc. But in the newer machines you have newer features, but

still they are backward compatible.

And this is all possible because the volume of chips that is manufactured is much, much

high. So, you can see that there is enough motivation to pay this extra cost of the design

although you are paying some extra thing for this CISC architecture. And there are

sufficient hardware resources that are available to translate from CISC to RISC

internally.

(Refer Slide Time: 05:34)

So, this is the register set in Pentium. Here you can see that it does not have a large

number of registers, although they have got some special-purpose registers like code

segment, stack segment, data segment. Also there is program counter which we call

instruction pointer, they have some conditional code flags, and there are several other

registers to perform different kind of jobs.

(Refer Slide Time: 06:05)

These are the addressing modes that are present in VAX machine. This was a very

popular machine in the 80s. So, just see how many addressing modes are present, starting

with register direct, immediate, displacement, register indirect, indexed, direct, memory

indirect, auto increment and auto decrement and scaled. So, the VAX machine included a

huge set of addressing modes.

(Refer Slide Time: 06:43)

.

Now, coming to reduced instruction set computer which is used in most of the computers

today; not only computers, also the processors for microcontrollers follow RISC

architecture. This is also referred as load-store architecture. So, by load-store architecture

we already discussed that only load and store instruction can be use to access the

memory and all other instruction will be operated on register.

So, only when memory data is required, you have to load it from the memory; once the

data are available then you can access it. The main features of architecture is very simple

for the sake of efficient pipeline. I already discussed very briefly about pipeline that will

be discussed in more detail later, but we must know that this is one of the main

motivation of RISC; that the RISC architecture is simple for the sake of pipeline.

Simple instruction set is used and very few addressing modes are used. It does not

support variety of addressing modes; but it has a large number of general purpose

registers. And it does not have many special function registers. Instruction length and

encoding is uniform for easy decoding. See if you encode the instruction all the

instruction in a specific fashion then the decoding will be much easier. And compiler

assisted scheduling of pipeline for improved performance will be there, you will be

seeing this particular feature later.

(Refer Slide Time: 09:10)

So, the popular RISC machine is CDC 6600 that came in 1964. So, RISC is existing

since 60s and this is more now that people have moved to RISC architecture. The ARM

microcontroller family is all having RISC even some other microcontroller families. So,

almost all computers today use RISC based pipeline for efficient implementation. And

RISC based computers use compilers to translate into RISC instructions. And CISC

based computer use the hardware to translate those instruction into simpler micro-

instructions that are RISC instructions.

(Refer Slide Time: 10:12)

A comparative study was performed in the year 1991 where a quantitative comparison

between VAX 8700 which was a CISC machine and MIPS M200 a RISC machine was

made. And what findings came up are the following. MIPS required execution of about

twice the number of instructions as compared to VAX that means the number of

instructions that are required by RISC machine is much more compared to CISC. So, as

CISC is having more complex instructions, so they require less number of instructions,

but on the other hand RISC uses very simple instructions.

There is a parameter that we will be looking little later, cycles per instruction, we call it

CPI. So, for each instruction what is the number of cycles that it requires; for VAX

machine it was about six times larger than the MIPS machine. So, we can say that in

VAX, it is taking only three instruction to execute, but each instruction is taking more

number of cycles to execute, whereas MIPS had three times the performance of VAX.

So, cycles per instruction were about six time larger in VAX. And, the performance of

MIPS was three times the performance of VAX.

Also much less hardware is required to build MIPS as compared to VAX because VAX

was having many complex instructions; for which you need to do complex decoding. So,

the hardware requirement is much more. Whereas RISC uses simple instructions

although they require more number of instructions. So, in that case this MIPS becomes

three times faster than VAX.

(Refer Slide Time: 13:11)

So, the conclusion was that persisting with CISC architecture is too costly both in terms

of hardware cost and also performance. And with this VAX was replaced by DEC Alpha

which was a RISC machine. So, they moved from CISC to RISC after such study. So,

this was a machine by DEC. So, CISC architecture based on x86 is different; because of

huge number of installation base, backward compatibility of the machine code is very

important from commercial point of view.

If backward compatibility is required, you need to have the instructions which you are

having earlier. So, because of such thing this x86 which is a CISC machine it is still very

important and they have adopted a balanced view. How is that balanced view they have

adopted? A user view is a CISC instruction set and there is a hardware that translates

every CISC instruction into an equivalent set of RISC instructions internally. So,

ultimately internally they are having some kind of RISC instructions.

And also the instruction pipeline executes these RISC instructions efficiently. So, they

still have this older CISC architecture at the user point of view level, but at the lower

level they have this RISC where those instructions are converted into simpler

instructions and those simpler instructions are executed, pipeline can also be performed

there which makes it more efficient.

(Refer Slide Time: 15:41)

Now, we will be going into MIPS32 architecture. This is a RISC architecture and we will

be performing a case study of this MIPS. We will look into the instruction set instruction

encoding in detail also the design of the data path of MIPS architecture and we will also

look into the control unit design issues in the later units. And we extend the basic data

path of MIPS to a pipeline architecture, and discuss some of the issues therein.

(Refer Slide Time: 16:32)

Now, MIPS32 there is a total of 32 general-purpose registers starting from R0 to R31.

Also, there is a special 32-bit program counter that is PC, which points to the next

instruction in memory to be fetched or executed. Now, this is not directly visible to the

programmer and it is only affected by certain instructions. When it is affected, you think

of a branch instruction, you think of a call. When you are going to a branch then PC must

be loaded with the branch address; you have to calculate the branch address with an

offset and then you have to go and execute that.

Now, a pair of 32-bit special purpose registers are also present we call it HI and LO

which are used to hold the result of multiply, divide and multiply accumulate instruction.

Now, see when you multiply two n-bit numbers the result can be 2n bits. So, you need to

store it in a 2n-bit register. So, for that purpose we have two 32-bit registers, HI and LO,

which are used for this multiply divide and multiply accumulate instructions.

(Refer Slide Time: 18:17)

Now, there are some common registers that are not present in MIPS32. What are those

registers? We do not have any stack pointer. We already know a stack pointer helps in

maintaining the stack in main memory, but we do not have any such kind of stack pointer

in MIPS32. We do not have any index register as well that can be used for we have

already seen index addressing mode, we require index address index register for some

purposes, but it is not present. And what can be done is that as these are not present, you

can use any register from the set of 32 registers and use it as an index register. Also there

is no flag register; now you can argue that if there is no flag register then how we will be

checking the operation? You have to perform the operation, store it in a register check

that value for zero or non-zero. So, we do not have any flag register like zero, sign, carry

and overflow. Now, why we do not have this you have seen in pipeline there are different

instructions that are coming in and they are going in a pipe in an overlapped fashion. Let

us say if we have this flag registers it might happen that one instruction has updated

some flag then the other instruction is not fully executed but has also updated that flag

then there will be a problem. So, instead of doing so this flag can be maintained in some

other fashions as done in this MIPS32 machine.

(Refer Slide Time: 20:20)

Now, these are the general-purpose registers, and these are the special-purpose registers I

have already discussed. R0 register is hardwired to the value 0. So, R0 contains always

zero value can be used as target register for any instruction whose result is to be

discarded. Or if you add you want to add a zero value to some register you can use R0.

R31 is used to store the return address when a function call is made; like as I already

discussed that there is no stack pointer.

So, if there is no stack pointer when there will be a call, return, branch these kind of

statement it may affect you have to store the address of the PC and then later when again

we execute that branch we will come down to that particular address and we execute it.

So, in such case we can use this R31 as return address and used by jump and link that is

JAL, and other instruction BLTZAL and BGEZAL etc. And it can also be used as a

normal register.

(Refer Slide Time: 21:58)

Let us take some examples. So, LD R4,50(R3). So, this instruction will load from this

particular address. It will add 50 + R3 then it will go to that particular memory location

and load the value to R4. Here R1 + R4 is added and it is stored in R2. Similarly, storing

means we need to store R2 into this particular location that is 54 + R3. And this is like

what we are doing there is no move instruction. If you want to move a data from R5 to

R3, all you can do is that you can add R5 with R0 and you can store it in R2. So, what

happens R5 is moved to R2.

Now, these are some examples like we have a MAIN code where from where our

execution starts and then we have another subroutine. So, what happens here, this is an

ADDI, we are adding this immediate value to R0 which is 0. So, R1 will have 35 and R2

will have 56. And this jump instruction will go to a function that is labeled by GCD; and

in GCD you will be seeing this some code for your GCD, and jump return (JR).

Now what you need to do now after fetching and decoding you have understood that you

have to move there. So, this PC value must be stored in that return address it can be

stored in R31, and then we move to this GCD we execute that. At the end of GCD you

must have an instruction which is JR to return address where you have to go to R31, get

the value loaded in PC, and then from this point the execution will start after returning

back here.

(Refer Slide Time: 24:42)

Now, how are HI and LO registers used? As I said during multiply operation HI and LO

registers store the product of an integer multiply. And during multiply-add or multiply-

subtract operation the HI-LO registers store the result of an integer multiply-add or

multiply-subtract, and during a division HI-LO registers store the quotient in LO and

remainder in HI of an integer divide. So, HI-LO registers are used for these few

purposes.

(Refer Slide Time: 25:28)

.

Now, let us see little more MIPS32 assembly language conventions. So, the integer

registers are numbered from R0 to R31. So, for doing so some simulators are available in

public domain like QtSPIM. You can write assembly language code there and execute it.

And these conventions have become a de facto standard when we write an assembly

language program for MIPS. So, a QtSPIM is exactly a MIPS32 simulator that can be

used to write assembly language programs. Basically some alternative names are used

for register to indicate their intended use in this.

(Refer Slide Time: 26:31)

So, register zero - R0 which is a constant zero. So, register name $zero is used to

represent constant zero value whenever required in a program. As this particular register

is reserved for an assembler, the name is $at. And this may be used as temporary register

during macro operation by an assembler. An assembler provides an extension to the

MIPS instruction set that are converted to standard MIPS32 instructions.

Let us see an example load address instruction used to initialize the pointer that means,

in R5 what we are doing we are loading an address, addr is a label from where we have

stored some a data. And I am loading that particular address into R5, but this instruction

is not there in your MIPS. So, how MIPS will see this, MIPS will convert this into set of

two instructions LUI (Load Upper Immediate). So, at this upper 16-bit of address is

loaded and then we do an or immediate (ori) with the lower 16 bit address. Firstly, I have

loaded the 16-bit number in the upper immediate.

(Refer Slide Time: 28:33)

Let us take this example that will make it clear. So, this la is loading this particular

address into t1 and this is nothing but addr, either you write addr or actually this address.

This is a 32-bit number. We do not have such kind of instruction la in MIPS. So, this

instruction will break down into couple of instructions when you actually execute. So,

this is the upper four nibbles A, B, C and D. So, in $t1 the upper 4 nibbles is added.

So, now you see in t1 this 16-bit is loaded with A, B, C, D. Now, what will we do we do

an ori that will add this and this with t1; in t1 you already have this particular value. You

are doing an ori with 0x1234 that is the next four nibbles you are or-ing with 1234, and

storing back the result in t1 itself. So, in t1 you will have ABCD you have or with 1234,

1234. So, this instruction is doing exactly what I explained.

(Refer Slide Time: 30:31)

Similarly, we have another register that is $v0 and $v1; the register that are used is R2

and R3. So, result of a function or an expression evaluation is stored in $v0 and in $v1.

Let us see, may be it can be used for up to two functions, return values and also as

temporary register during expression evaluation.

(Refer Slide Time: 31:21)

Next set of register is $a0, $a1, $a2, $a3 we use as arguments. So, these are used to pass

up to four arguments to a function.

(Refer Slide Time: 31:43)

.

These are temporary register $t0 to $t9. And these are not preserved across calls. So, it

might happen that when you are using this register for some purpose, it can be also used

for other. So, it is not preserved across the call.

(Refer Slide Time: 32:09)

May be used as temporary variables in programs, but these registers might get modified.

So, it is up to you that if you are using this then you have to be careful enough, and these

register might get modified when some functions are called other than user written

functions that means, inside also we are calling some function, some instruction are

breaking down into some further instructions.

(Refer Slide Time: 32:50)

.

So, in this particular case you can see that it can be user other than user return function it

can be overwritten, but these are preserved across call. So, even if there are some other

function calls you can use this set of temporary register starting from $s0 to $s7.

(Refer Slide Time: 33:04)

May be used as temporary variables in the program. So, I will suggest you if you are

coding this using you are writing some assembly language program then you can use this

set of these set of registers for your programming purpose.

(Refer Slide Time: 33:26)

We have another set which is $gp, $sp, $fp, and $ra. So, $gp is pointed to global area,

$sp is your stack pointer, $fp is your frame pointer, and $ra is your return address. So, we

are having all these, but we are not having with a special function register rather the

general purpose registers are only used for this, but we know that R29 is a general

purpose register which is used for stack pointer. So, these registers are used for variety of

pointers. So, global pointers as I said point to the memory location from where the global

variables are allocated space. Stack pointer points to the top of the stack. A frame pointer

points to the activation record in stack. And return address is used while returning from a

function.

(Refer Slide Time: 34:34)

We have register $k0 and $k1 reserved for OS kernel. So, it is highly recommended not

to use these registers.

So, we come to the end of lecture 8. So, in this lecture, now we have given you an idea

what we will be discussing next. We have discussed about some properties of instruction

set architecture and now we are moving on with a particular architecture that is MIPS32,

and I have discussed some of its features and we will be discussing many more in course

of time.

Thank you.

