Computer Architecture and Organization
Prof. Kamalika Datta
Department of Computer Science and Engineering
National Institute of Technology, Meghalaya

Lecture - 08
CISC And RISC Architecture

Welcome to the next lecture on CISC and RISC architecture. Till now what we have seen
how an instruction gets executed, what kind of instruction format is available and what
kind of addressing modes are used. So, now we will be looking into that architecture

where we can divide those sets into some groups, that is, RISC and CISC.

(Refer Slide Time: 01:06)

Broad Classification

* Computer architectures have evolved over the years
= Faatured that were developad for mainframei and dupercomputert in
the 1960s and 1970s have started to appearon a regular basis on later
genaration microprocessors
* Two broad classifications of I5A:
&) Complex instruction Set Computer (CISC)

b} Reducedinstruction Set Computar (RISC)

BT i TR R LTTTLTR OF
T EHAR &R e | AT R LRSS TEUHSERLIEL T, M ER L

This is a broad classification. Computer architectures have evolved over the years. And
there are many features that were developed for mainframes and for supercomputers in
the 1960s and 70s and that started to appear as regular features on the later generation of
microprocessors. Based on that we have so many features; they are broadly classified
into complex instruction set computer called CISC, and reduced instruction set computer

called RISC.

(Refer Slide Time: 01:49)

CISC versus RISC Architectures

« Complex Instruction Set Computer (C150)
Moretraditional approach
= Main fEsturesy

LB - LT R LEA T ETUACY |r]

* Large numberof addressing mades [H-H, H-M, M-M, indesed, indirect, et
¢ Special-purpose registers and Floags (gn. tero BTy overtiow, ete

o Wailable length instiections f Complos Instruction encoding

* Ease of mapping high-level language statemants ta machine instruction

B TEL O
WY EHAR &SRR LR R LANILN LEReS

Now, let us see how CISC and RISC architectures differ. Coming to CISC it is a more
traditional approach. So, the main features of this complex instruction set computers are
they have complex instruction set. They also have a large number of addressing modes.
They also have some special-purpose registers and flags that are used to carry out
various operations, and the instructions are not all of same length. So, they have variable

length instructions.

So, as I have already told earlier that if you have a fixed-length instruction it becomes
easy for encoding and decoding, but if you have variable-length instruction then the
encoding needs to be more complex. And it also takes more time for decoding, because
you have to know each of the bits and based on that a particular action will be
performed. So, ease of mapping high-level language statement to machine code is
possible in CISC, but instruction decoding and control unit design are much more
complex. And of course, if you have variable length instruction, pipeline implementation

will also be quite complex.

(Refer Slide Time: 03:40)

= CISCExamples

o (AR 360870

e Gl CISE instrudticen set Thal survived Swer genderation

T volumae of chilps manufactured (s sobigh that there |
enough motivation to pay the extra design cost

¥ Sufficient hardware resources avallable today totrans|ate

wFTIL O

CIRF | EAKI U LR

Now, CISC machines emerged in 60°s and 70’s --- we have seen IBM 360, 370, VAX-11
were popular in seventies and eighties. And from 1985 and till present we have Intel
architectures that use CISC architecture; it follows a CISC architecture and has survived
over generations. So, over the generation, if you see any CISC machine based on Intel;
the desktop PCs, laptops, etc. But in the newer machines you have newer features, but

still they are backward compatible.

And this is all possible because the volume of chips that is manufactured is much, much
high. So, you can see that there is enough motivation to pay this extra cost of the design
although you are paying some extra thing for this CISC architecture. And there are
sufficient hardware resources that are available to translate from CISC to RISC

internally.

(Refer Slide Time: 05:34)

Register Sat
in Pentium

R y) e
AN
EBX
KX
EDX
(LT
FiP b
E
Esl
s
%
3%
Fs
Fy
s [
EFLALN

BETEL i

EER | EAFIUN LRSS

Rk Palen

L mibe faa e e
el b T g

i s s wosrne
PPl s b il
Viwd s e givirad
IRl s ad gl il
Imwirmyifam Foindry
i umllilsi (ades

So, this is the register set in Pentium. Here you can see that it does not have a large

number of registers, although they have got some special-purpose registers like code

segment, stack segment, data segment. Also there is program counter which we call

instruction pointer, they have some conditional code flags, and there are several other

registers to perform different kind of jobs.

(Refer Slide Time: 06:05)

Madesin
VAX

Y EHAR AR i

Register direct
immadia
Displacemant
Register indi

Py indirect

ADD
ADD
ADD
ADD
AL
AL

ADCH
ADD
ALl

Addressing D L o T

R1,R2
R1,m5
R, 3 HHES)
R, (R
R1,(R2+R3)
R1, {1000
R, @(R4)
R, (R2}s
A1 (AZ)

R1 50(RZIRE]

ETEL O
Bk | AN LA SRR Y

R

Rl =

=Nl

i1

Rl #

Rl

Ri +

R1

Kl =

K1

n2

T

Maom|2 20+ /%)

. Wam(iLl
Mam[A R3]

¢ W[1000]
Mem|Mem|Rd]|
& MemiR2]: Rl
Mam|A2]; A2

o Wwin| S0 R« R1%d|

These are the addressing modes that are present in VAX machine. This was a very

popular machine in the 80s. So, just see how many addressing modes are present, starting

with register direct, immediate, displacement, register indirect, indexed, direct, memory
indirect, auto increment and auto decrement and scaled. So, the VAX machine included a

huge set of addressing modes.

(Refer Slide Time: 06:43)

+ Reduced Instruction Sat Computer (RISC)
= Very widdy used among many manufacturers today
Also referred to as Load-Store Architecture
Dinly LOAD and STORE instructions Sccass memany
o Al other insIrections Operate on processorn Tegisiers
= Main features

RETEL Ok

Y EHAR AP R CI | AN LU LR

Now, coming to reduced instruction set computer which is used in most of the computers
today; not only computers, also the processors for microcontrollers follow RISC
architecture. This is also referred as load-store architecture. So, by load-store architecture
we already discussed that only load and store instruction can be use to access the

memory and all other instruction will be operated on register.

So, only when memory data is required, you have to load it from the memory; once the
data are available then you can access it. The main features of architecture is very simple
for the sake of efficient pipeline. I already discussed very briefly about pipeline that will
be discussed in more detail later, but we must know that this is one of the main

motivation of RISC; that the RISC architecture is simple for the sake of pipeline.

Simple instruction set is used and very few addressing modes are used. It does not
support variety of addressing modes; but it has a large number of general purpose
registers. And it does not have many special function registers. Instruction length and
encoding is uniform for easy decoding. See if you encode the instruction all the

instruction in a specific fashion then the decoding will be much easier. And compiler

assisted scheduling of pipeline for improved performance will be there, you will be

seeing this particular feature later.

(Refer Slide Time: 09:10)

= RIS Examples
LI (19&4
= BAIPS family [1980-90) = Almast all this computiens taday use a RIS 1:

v SPARI Based plpeline tar elficlent

* ARM micracontraller family mplementation
& H|% .".'-..'-'1.‘rlul".||||1|l".||.-' compibers
EG translate intd RISC (Astruction

® IS0 based comiputers (@ g o) u

i
hardware to translate into RIS |
|

HETIL ChiLILE
HY EHAR &P el | AT LAY

So, the popular RISC machine is CDC 6600 that came in 1964. So, RISC is existing
since 60s and this is more now that people have moved to RISC architecture. The ARM
microcontroller family is all having RISC even some other microcontroller families. So,
almost all computers today use RISC based pipeline for efficient implementation. And
RISC based computers use compilers to translate into RISC instructions. And CISC
based computer use the hardware to translate those instruction into simpler micro-

instructions that are RISC instructions.

(Refer Slide Time: 10:12)

Results of a Comparative Study

* A gquantitative comparison of VAX 8700 (a CISC machine) and MIPS M2000 (a
RISC machina) with comparable organizations was carriad out in 1991
= Some findings
=PI reguired ssecution of aboui twice Phe number of nstroct lons as comparsd
fo VAKX
Cyclias Por Instructicens (CP1) for VAX was about six timss larger than that of MIFS
= Hence, MIPS had thres times the performande of Vax

i
= Aleo, much bess hardware is required to bulld MIPS a8 comparad to VAKX

BT i
HT EHAR &R R ik | ALK LAY

A comparative study was performed in the year 1991 where a quantitative comparison
between VAX 8700 which was a CISC machine and MIPS M200 a RISC machine was
made. And what findings came up are the following. MIPS required execution of about
twice the number of instructions as compared to VAX that means the number of
instructions that are required by RISC machine is much more compared to CISC. So, as
CISC is having more complex instructions, so they require less number of instructions,

but on the other hand RISC uses very simple instructions.

There is a parameter that we will be looking little later, cycles per instruction, we call it
CPI. So, for each instruction what is the number of cycles that it requires; for VAX
machine it was about six times larger than the MIPS machine. So, we can say that in
VAX, it is taking only three instruction to execute, but each instruction is taking more
number of cycles to execute, whereas MIPS had three times the performance of VAX.
So, cycles per instruction were about six time larger in VAX. And, the performance of

MIPS was three times the performance of VAX.

Also much less hardware is required to build MIPS as compared to VAX because VAX
was having many complex instructions; for which you need to do complex decoding. So,
the hardware requirement is much more. Whereas RISC uses simple instructions
although they require more number of instructions. So, in that case this MIPS becomes

three times faster than VAX.

(Refer Slide Time: 13:11)

= Conclusion
Parsisting wath CI50 architactung is too costly, both in terms of hardwarns cost
and also pErformand
= WX was replaced iy ALPHA (a RISL processor | by Digital Eoquipmsnt

BFTIL Ol FATH AL BETITLAR OF

T AR | AT RS, PRUHSERLEL T, WO

So, the conclusion was that persisting with CISC architecture is too costly both in terms
of hardware cost and also performance. And with this VAX was replaced by DEC Alpha
which was a RISC machine. So, they moved from CISC to RISC after such study. So,
this was a machine by DEC. So, CISC architecture based on x86 is different; because of
huge number of installation base, backward compatibility of the machine code is very

important from commercial point of view.

If backward compatibility is required, you need to have the instructions which you are
having earlier. So, because of such thing this x86 which is a CISC machine it is still very
important and they have adopted a balanced view. How is that balanced view they have
adopted? A user view is a CISC instruction set and there is a hardware that translates
every CISC instruction into an equivalent set of RISC instructions internally. So,

ultimately internally they are having some kind of RISC instructions.

And also the instruction pipeline executes these RISC instructions efficiently. So, they
still have this older CISC architecture at the user point of view level, but at the lower
level they have this RISC where those instructions are converted into simpler
instructions and those simpler instructions are executed, pipeline can also be performed

there which makes it more efficient.

(Refer Slide Time: 15:41)

MIPS32 Architecture: A Case Study

+* Asa case study of RISC |15A, we shall be considering the MIP532
architecture
= Look into the instruction set and instruction ancoding In datal
= Design the data path of the MIP532 architecture, and also look inte the
control unit dedign laues
- Extend the basic data path of MIPS32 to a pipeline architecture, and
discuss some of the issues therein

BETIL i
Rk HEANIUH LER Y

T AR &R

Now, we will be going into MIPS32 architecture. This is a RISC architecture and we will
be performing a case study of this MIPS. We will look into the instruction set instruction
encoding in detail also the design of the data path of MIPS architecture and we will also
look into the control unit design issues in the later units. And we extend the basic data

path of MIPS to a pipeline architecture, and discuss some of the issues therein.

(Refer Slide Time: 16:32)

MIPS32 CPU Registers

= The MIP532 |54 defines the following CPU registers that are visible to the
machina/assembly language programmar.

al 32, 32-bit general purposs '|-:.:|-\.I|-|.||||'H| |, R toR1T
B} Aspecial-pifpose 18-t progiam counter |

* Paglnts to the next insbruction in memory 1o be fetched and executed

= Mot direcely visible to the programmar

Alected anly indirectly by cartain instructions (lke Branch, call, &t)
el dpair ol 12-618 ypi |{‘|‘|II.|.'| rogieters M and LOY, which dare used 86 Kold

rh Fadu e af raltiply, dndada, and mulnlply-aooimulans ine etk

HETEL O
HT EHAR &R k| AT B SR

Now, MIPS32 there is a total of 32 general-purpose registers starting from RO to R31.

Also, there is a special 32-bit program counter that is PC, which points to the next

instruction in memory to be fetched or executed. Now, this is not directly visible to the
programmer and it is only affected by certain instructions. When it is affected, you think
of a branch instruction, you think of a call. When you are going to a branch then PC must
be loaded with the branch address; you have to calculate the branch address with an

offset and then you have to go and execute that.

Now, a pair of 32-bit special purpose registers are also present we call it HI and LO
which are used to hold the result of multiply, divide and multiply accumulate instruction.
Now, see when you multiply two n-bit numbers the result can be 2n bits. So, you need to
store it in a 2n-bit register. So, for that purpose we have two 32-bit registers, HI and LO,

which are used for this multiply divide and multiply accumulate instructions.

(Refer Slide Time: 18:17)

+ Some common registers ara missing in MIP532.

= Stock Pointer |5P) register, which helps in maintaining a stack in main
mi@mary
* Any of the GPRS can be used a5 the stack polnter

« Moseparate PLUSH, FOP CALL and RET instructions

= fﬂﬂ'lh‘nlgi.l!ll’l Al which halps in accessing mamaory words sequantially
(L Wail Til=1a"

* Anig of the GPRE can be uted 4t an indesx regisre
= Flag reglsters (like ZERD, S5IGN, CARRY, OVERFLOW) that keeps track of
tha rasults of arithmatic and lagical oparations
o Maintains flags in reglsters, to avold problems in pipsline implementatic

HETEL ChINE
T EHAR &% W S| o ILAFILN LA S

Now, there are some common registers that are not present in MIPS32. What are those
registers? We do not have any stack pointer. We already know a stack pointer helps in
maintaining the stack in main memory, but we do not have any such kind of stack pointer
in MIPS32. We do not have any index register as well that can be used for we have
already seen index addressing mode, we require index address index register for some
purposes, but it is not present. And what can be done is that as these are not present, you
can use any register from the set of 32 registers and use it as an index register. Also there
is no flag register; now you can argue that if there is no flag register then how we will be

checking the operation? You have to perform the operation, store it in a register check

that value for zero or non-zero. So, we do not have any flag register like zero, sign, carry
and overflow. Now, why we do not have this you have seen in pipeline there are different
instructions that are coming in and they are going in a pipe in an overlapped fashion. Let
us say if we have this flag registers it might happen that one instruction has updated
some flag then the other instruction is not fully executed but has also updated that flag
then there will be a problem. So, instead of doing so this flag can be maintained in some

other fashions as done in this MIPS32 machine.

(Refer Slide Time: 20:20)

il Q il o Two af the GPRs have assigned functions

I Hil 1) R is hard-wired to a value . f zire

11 | = Can be uted 85 the tarpet register far

I By INETFUCT DN wWho 4 rasult 1§00 B
i 31 0 fhiscarcied
A [i | & Canalio be used ad 4 souroe when b
: Special Purpose Reghters

B RAL i ued 00 W0Gre The return addre

"
™ when a tunctian call is mada

[& Ll by thee jump and Link and

branch-and- lnk instructionm like JAL
BLTZAL, BGEZAL, et
General Purpose Registers = Can alvo be used as & normal ris

WFTEL Obi i
HT EHAR AR IR L] AL LR

Now, these are the general-purpose registers, and these are the special-purpose registers |
have already discussed. RO register is hardwired to the value 0. So, RO contains always
zero value can be used as target register for any instruction whose result is to be
discarded. Or if you add you want to add a zero value to some register you can use RO.
R31 is used to store the return address when a function call is made; like as I already

discussed that there is no stack pointer.

So, if there is no stack pointer when there will be a call, return, branch these kind of
statement it may affect you have to store the address of the PC and then later when again
we execute that branch we will come down to that particular address and we execute it.
So, in such case we can use this R31 as return address and used by jump and link that is
JAL, and other instruction BLTZAL and BGEZAL etc. And it can also be used as a

normal register.

(Refer Slide Time: 21:58)

Some Examples
H] A '.|'5'|;||' 1/ R = Mem| ..ll-I{I.
AL 1 B 2
[Sa[R3), B2 Mem|S54+R3] = k2
RAAIN ADD R R, 3% J/RI

ADD H2, RO, 5 ffRYw S
|.".:'-|| R2 R% RD fIR2 HS | JAL GCD

WFTEL Ok

] AT RS,

Let us take some examples. So, LD R4,50(R3). So, this instruction will load from this
particular address. It will add 50 + R3 then it will go to that particular memory location
and load the value to R4. Here R1 + R4 is added and it is stored in R2. Similarly, storing
means we need to store R2 into this particular location that is 54 + R3. And this is like
what we are doing there is no move instruction. If you want to move a data from RS to
R3, all you can do is that you can add R5 with RO and you can store it in R2. So, what
happens R5 is moved to R2.

Now, these are some examples like we have a MAIN code where from where our
execution starts and then we have another subroutine. So, what happens here, this is an
ADDI, we are adding this immediate value to RO which is 0. So, R1 will have 35 and R2
will have 56. And this jump instruction will go to a function that is labeled by GCD; and
in GCD you will be seeing this some code for your GCD, and jump return (JR).

Now what you need to do now after fetching and decoding you have understood that you
have to move there. So, this PC value must be stored in that return address it can be
stored in R31, and then we move to this GCD we execute that. At the end of GCD you
must have an instruction which is JR to return address where you have to go to R31, get

the value loaded in PC, and then from this point the execution will start after returning

back here.

(Refer Slide Time: 24:42)

How are the Hl and LO registers used?

= Duringa multiply operation, the Hl and LO registers store the product of an
integer multiply

= Hldenotes the high-order 32 bits, and L0 denotes the low-order 12 bits

* Durings multiply-add or multiply-subtract operation, the H| and LD registers
store the result of the ntager multiply-add or multiply-subtract

* Duringa division, the Hl and LO registars store the {';iu}qmr'r {im LOY) and
ramainder (in HI) of integer divide

: L b hlTalhkl AT ITLAR OF
HY EHAR &R Rk | AN LR AR Y FRUHSELUIL T, MR AT

Now, how are HI and LO registers used? As I said during multiply operation HI and LO
registers store the product of an integer multiply. And during multiply-add or multiply-
subtract operation the HI-LO registers store the result of an integer multiply-add or
multiply-subtract, and during a division HI-LO registers store the quotient in LO and
remainder in HI of an integer divide. So, HI-LO registers are used for these few

purposes.

(Refer Slide Time: 25:28)

Some MIPS32 Assembly Language Conventions

= Tha integer registers of MIPS32 can be accessed as RO..R31 orrD..r3lin an
assambly language program.

= Severalassamblers and simulators are availablein the public domain (like
QtSPIM) that follow some specific conventions
= These conventlons have become like a de focro standand ehien we wilte
assembly language programs for MIFS32

= Basically some alternate names are used for the registers to indicate their

HETEL Dl
HT EHARASHRIR L RCATI LN LR

Now, let us see little more MIPS32 assembly language conventions. So, the integer
registers are numbered from RO to R31. So, for doing so some simulators are available in
public domain like QtSPIM. You can write assembly language code there and execute it.
And these conventions have become a de facto standard when we write an assembly
language program for MIPS. So, a QtSPIM is exactly a MIPS32 simulator that can be
used to write assembly language programs. Basically some alternative names are used

for register to indicate their intended use in this.

(Refer Slide Time: 26:31)

Sai H1 Heserved or assemblod

nitialize polnters

™ RS mclelr
I
il Sal Uppar- 16-bits-of- add
ol RS, $al Lower- 16-bils-ol-adds

¢ Pl T sl BILTITLATR OF
Y EHAR &P R e 1 AT R LT PRS0, R,

So, register zero - RO which is a constant zero. So, register name $zero is used to
represent constant zero value whenever required in a program. As this particular register
is reserved for an assembler, the name is $at. And this may be used as temporary register
during macro operation by an assembler. An assembler provides an extension to the

MIPS instruction set that are converted to standard MIPS32 instructions.

Let us see an example load address instruction used to initialize the pointer that means,
in RS what we are doing we are loading an address, addr is a label from where we have
stored some a data. And I am loading that particular address into R5, but this instruction
is not there in your MIPS. So, how MIPS will see this, MIPS will convert this into set of
two instructions LUI (Load Upper Immediate). So, at this upper 16-bit of address is
loaded and then we do an or immediate (ori) with the lower 16 bit address. Firstly, I have

loaded the 16-bit number in the upper immediate.

(Refer Slide Time: 28:33)

Let us take this example that will make it clear. So, this la is loading this particular
address into t1 and this is nothing but addr, either you write addr or actually this address.
This is a 32-bit number. We do not have such kind of instruction la in MIPS. So, this
instruction will break down into couple of instructions when you actually execute. So,

this is the upper four nibbles A, B, C and D. So, in $t1 the upper 4 nibbles is added.

So, now you see in t1 this 16-bit is loaded with A, B, C, D. Now, what will we do we do
an ori that will add this and this with t1; in t1 you already have this particular value. You
are doing an ori with 0x1234 that is the next four nibbles you are or-ing with 1234, and
storing back the result in t1 itself. So, in tI you will have ABCD you have or with 1234,
1234. So, this instruction is doing exactly what I explained.

(Refer Slide Time: 30:31)

Sl L) Rt of Tunction, of for expresaion evaluation
vl R3 Result of funcion, or for expressian evaluation
Fay be used Torup o twe Tunction
FEtUrn values, and alsd as temparary
FERISTETS dUring Expression el ation

[i TN | TRk BLTITLATR OF
T EHAR &7 B | HEANILHA SRR TS FROHNELLR T, LA

Similarly, we have another register that is $v0 and $v1; the register that are used is R2
and R3. So, result of a function or an expression evaluation is stored in $v0 and in $vl.
Let us see, may be it can be used for up to two functions, return values and also as

temporary register during expression evaluation.

(Refer Slide Time: 31:21)

Sal LE] Arguiment |
S5al R% Argumant J
Sal Wil drgument 3

R7 Argument 3

| May b used io pass up (o four

| arguments to functlons

BT S Pl TR Skl LTITLTR OF
T KM &% Bk | REANIUA LRF TS FRUHNELRR T bt

Next set of register is $a0, $al, $a2, $a3 we use as arguments. So, these are used to pass

up to four arguments to a function.

(Refer Slide Time: 31:43)

E"T_'.-:"'T""-_E_
LT Temporary [not preserved scross call)
a1l "9 ijaarary (Aol prassceed aordaes call)
LT Aio Tempaorary (not preserved across call)

Rl Temporary [nol preserved acrass call)

Sed R12 Temparary (ot preserved scross call)
L1k R13 Temporary (nor presamsed across call]
1 Aid Temporary [not preserved aoross call)
RIS Temporary (ot preserved across call]

.| R24 lemporary [not preserved across call)

1 LF Temporary [nol presesved across call]

BETEL db i METIS AL BT OF
T EHAR &R R I T F FELHSELRLE, MESHALAYA

These are temporary register $t0 to $t9. And these are not preserved across calls. So, it
might happen that when you are using this register for some purpose, it can be also used

for other. So, it is not preserved across the call.

(Refer Slide Time: 32:09)

mm_:::—

kA Temporary [not presenved across call)

K9 Termporary [nat presecved across call]
5k2 R10 Femporaty [not preserded acrods call)

H1l Temparary [not presered across call)
Srd A1z

edd a8 temporary variables in programs

a3 R13 registers might get modified when sams
St6 Rid functions are called [other than user -written

1S functians)
Sil R2d Temporany (not preserved aoross call)
15 Rd% Temporary [nol presened soross call]

[il T LY Pl TS LT ITLFTR OF
L I | HICAN L L e PRSI, ML

May be used as temporary variables in programs, but these registers might get modified.
So, it is up to you that if you are using this then you have to be careful enough, and these

register might get modified when some functions are called other than user written

functions that means, inside also we are calling some function, some instruction are

breaking down into some further instructions.

(Refer Slide Time: 32:50)

Sel R1G Temporary [preserved scross call)
5&l R17 Temporary [préserved acro allj
Sl R18 lemiporary [preserned across call)
Ss3 R19 Temporary [preserved across call]
Sad R0 Temporary [preseried across call)

Rl lemporary [presered across call)
Sy R22 Temporary [preserved scross call)

iFE] laimporary [preterad acrods call)

WETEL Ol kg
1Y EHAR &P R L AT LERines

So, in this particular case you can see that it can be user other than user return function it
can be overwritten, but these are preserved across call. So, even if there are some other

function calls you can use this set of temporary register starting from $s0 to $s7.

(Refer Slide Time: 33:04)

Sull RiG Temporary (preserved scross call)
5l R17 Temparary (préterved scroes call)
Sl R1E Temporary (preserved across call)
L | R19 Temporany |préseried across call)
Lad R Tam porary [preseried across call)
Rl leinporary [preservsd across call)
S A2 i"-'wl-' usid s temporary varlabhes in program
Sst Ri3 EIIl.'. Ffisters do not gt madiltied sird
illllu-lu.u".l..l.ll'. |

TR ONNE METE S ATTTLITY O
T EHAR &R 0 1 AT R RS FEUHSELLIL T, MELER L

May be used as temporary variables in the program. So, I will suggest you if you are
coding this using you are writing some assembly language program then you can use this

set of these set of registers for your programming purpose.

(Refer Slide Time: 33:26)

[-

SEP RIR Pointer to global area

Sap Ri9 Stack pointer
Sip AT0 Frame pointer

R3] Reiurm address [used by lunction call)

Iheese registers are used Tor o varlety ol polnter
& Dlabal Gres: podnts 1o the maemcry addr Fricarm wiferie Thi

global variables are allocated space
Stack pointer; points to the topof the stack i memary
* Frame pointer: poInts 1o the activation record I stack

* Return addre v it e returning from & Tuncthon
I

L LY
HY EHAR AP IR k| AT R LAy

We have another set which is $gp, $sp, $fp, and $ra. So, $gp is pointed to global area,
$sp is your stack pointer, $fp is your frame pointer, and $ra is your return address. So, we
are having all these, but we are not having with a special function register rather the
general purpose registers are only used for this, but we know that R29 is a general
purpose register which is used for stack pointer. So, these registers are used for variety of
pointers. So, global pointers as I said point to the memory location from where the global
variables are allocated space. Stack pointer points to the top of the stack. A frame pointer
points to the activation record in stack. And return address is used while returning from a

function.

(Refer Slide Time: 34:34)

&k RT Raservisd for 0% kerne |
& W

These registors ane supposed 6o be used by the O% kernel 0§ real
camputer system

i i+ highly recommended not 1o use Those registers

[e T LY |
T AR T EE | AN LRSS

We have register $k0 and $k1 reserved for OS kernel. So, it is highly recommended not

to use these registers.

So, we come to the end of lecture 8. So, in this lecture, now we have given you an idea
what we will be discussing next. We have discussed about some properties of instruction
set architecture and now we are moving on with a particular architecture that is MIPS32,
and I have discussed some of its features and we will be discussing many more in course

of time.

Thank you.

