
Computer Architecture and Organization
Prof. Indranil Sengupta

Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur

Lecture – 63
Some Case Studies

In this lecture, we shall be looking at case studies of some modern day processors that

we see around us. We shall be basically looking at two such, one is that of a so-called

graphics processing unit or GPU, and the other is the evolution of the Intel class of

processors.

(Refer Slide Time: 00:48)

(Refer Slide Time: 00:50)

Let us try to explain what a graphics processing unit is. Traditionally GPU were used as a

graphics accelerator for a processor, because with the years the requirements and the

demand of graphic processing have increased. The processor with the help of its own

instructions, it will become very difficult for it to handle all the graphics processing

tasks. The trend is that a separate chip or a processor is used dedicated for all the

graphics, multimedia, animation kind of applications that has come to be known as GPU.

So, GPU is a processor that is optimized for graphics computations, both in 2D and 3D.

These processors have some very specific features that help in video processing, visual

computing, etc. Essentially a GPU is a highly parallel highly multithreaded

multiprocessor. We talked about parallel processing briefly earlier. A GPU is like a very

highly parallel computer architecture which resembles the SIMD kind of processing

where there are number of simple processors that are under control of a single control

unit. The idea is something like that. With the help of very specific instructions, it can

provide real time rendering of videos and similar applications.

The interesting thing is that because of its inherent architecture, it is a highly parallel

SIMD machine. So, why use it only for graphics, we can also use it as a scalable parallel

computing engine to execute some applications. In general, we can have a heterogeneous

computing system where the parts of the competition that can be parallelized can run on

GPU, while the other part can run on a conventional CPU. You will see such computer

systems available today where CPU and GPU are residing inside the same box.

(Refer Slide Time: 03:53)

Some of the characteristics of GPU is that it is based on the SIMD mode of computation

for processing. There are large numbers of ALUs, it goes in the order of 1000s. In a

normal CPU, we talk about 2 core, 4 core or 6 core, but here, we are talking about 1000s

of very simple processors that are basically ALUs. Such kind of architecture can be used

in applications where you are processing on large arrays or vectors of data, and there is

high parallelism available in the application. Not only the ALUs, each such processing

unit also contains some small local memory so that some local data can be loaded and

processing can be carried out parallely on all the processing units. And of course, there

has to be a sophisticated load store unit. From the memory, you may have to load a

vector or array of data, similarly you may have to store a vector or array of data.

(Refer Slide Time: 05:16)

Today you have many parallel computing systems in the market that combines CPU and

GPU. For applications where the number of threads are very less or which does not use

multithreading, CPUs work better, because CPUs with a few threads are much more

efficient, their instruction sets are much more powerful their operation latency is also

less.

But if you think of programs that have thousands of threads; then running them on a

CPU may not be that efficient. Here GPUs come into the picture. GPUs can provide very

high throughput for multithreading kind of application where the number of threads are

very large. There are applications where we use both kinds of computing, the sequential

parts can be running on the conventional CPU, and the numerically intensive parts that

are heavily multithreaded can run on GPUs. There are GPUs that can consist of up to

1000 cores.

(Refer Slide Time: 06:51)

Now, I am showing you a typical architecture diagram of a GPU. You see the processors

are divided into clusters, they are not places together they are placed in clusters. In this

example, you can see each cluster is having 8 + 8 = 16 cores, and there are 8 such. So, 8

x 16 = 128 cores here. Each of these clusters is having data cache from where data can be

loaded and stored, and there is a bus that connects these clusters to load store units. Now

to increase the bandwidth between the memory and the cores, there can be multiple load

store units that can run in parallel. Here I am showing 6 load store units.

There is a thread execution manager, which is more in the software part. The threads can

be scheduled on these clusters and inside the cluster, there will be a simple operating

system where depending on the available cores, a thread will be running on one of the

cores. This is also a feedback path. As a result of computation, the thread manager can be

informed and it can act accordingly. We have a highly parallel computing system where

these so-called cores can be very simple as compared to a normal processor core. But

suppose there are 128 cores, I can potentially carry out 128 multiplications at the same

time, I can carry out 128 additions at the same time.

This is the advantage of vector or array processing.

(Refer Slide Time: 09:00).

Let us digress a little bit, let us look into one question. The x86 family of chips that you

know is based on CISC architecture; do they use microprogramming because there is a

dilemma that I talked about earlier? Towards the beginning of the class, you have seen

that the RISC architectures provide you with an implementation that on the average runs

faster than an equivalent CISC architecture platform. So, a program will run faster on a

RISC architecture as compared to a CISC architecture, this has been found through

experiments.

Now, the question is because of legacy reasons, because of the requirements of backward

compatibility, the Intel series of processors that are most widely used in the world today

are stuck with this CISC kind of architecture. So, are they compromising on poorer

performance this is the question. The dilemma that I am talking about is that; RISC

architectures execute instruction faster than CISC, and RISC architecture can be

efficiently implemented using hardwired control. But in CISC architecture because of the

fact that some of the instructions are very complex, if you want to build a pipeline

directly from there, the pipeline may become quite complex. There can be a compromise

you can have make.

For the complex instruction sets, you can use microprogramming to break them up into

simpler instructions. And at the next level you can have a RISC kind of an architecture

that will be executing the simpler instructions using a combination of micro

programming and hardware control.

(Refer Slide Time: 11:22)

So, what I have said is that the Intel processor chips are based on CISC instructions, they

use in the first step microprogramming to break the complex instructions into simpler

sub-operations, but here we note that all instructions need not be broken, there may be

some instructions that are already like RISC, they need not have to go through this.

These sub-operations are very similar to RISC kind of instructions. So, at the level of the

CISC instructions, you can regard that we are using microprogramming, but after the

instructions are broken up into this RISC kind of instructions, you may consider that we

are using hardware control to execute those instructions in a very efficient and compact

pipeline.

(Refer Slide Time: 12:28)

So pictorially it can look like this. You have CISC instructions at the top level, then you

have microprogramming that will be translating them into simple operations, which are

RISC like instructions. These in turn will be executed on a pipeline, here I am showing

the pipeline of MIPS32; this means, something similar to this.

Just using hardware control, you can execute these RISC-like instructions on the

pipeline. This is how instructions are typically executed on modern day Intel processors.

(Refer Slide Time: 13:10)

Now, I shall be looking at the evolution of the Intel processor. We shall not be going into

the details because it may involve a lot of advanced topics that we have not covered in

the class. I shall be trying to give an overview of how this evaluation has taken place,

and what are these different families mean. You have been hearing about the Intel

processor families, their coming through so many generations like Nehalem, Ivy bridge,

Sandy bridge, etc.

So, what are these actually? Let us very briefly go through this. The point is that over the

years, there have been architectural advancements that have taken place in the Intel

processor families. Some of the earlier architectures were called Netburst that was not so

popularly known. Then core, you have seen the core2-duo kind of processors, then

Nehalem, Sandy bridge, Ivy bridge, Haswell; these are some names you may have heard.

Let us look briefly what are the features.

(Refer Slide Time: 14:29)

The first of these architectures is the Netburst architecture. The first thing was that it

used hyper threading. Hyperthreading uses some kind of virtualization where a single

processor appears like 2 logical processors; as if 2 threads are running on the same

processor. To the threads the processor seems to be a separate dedicated virtual

processor. Because you have 2 threads you can say that there are 2 virtual processors that

run those 2 threads. Each of these logical processors had their own sets of registers,

which means we had 2 different register sets, one for thread 1, one for thread 2.

By doing this resource utilization, performance can be improved to a great extent.

Because you see, whenever you use multithreading with a single set of registers, when

you switch from one thread to the other, you may have to save some registers and restore

the new registers. But here because there is separate set of registers, thread switching is

very fast. You simply switch to the other register set. There was another concept here that

was called the rapid execution engine, where ALUs were running faster than the

processor. The ALU clock was running at twice the frequency as compared to the

processor clock.

The basic integer operations were executing in half the processor clock tick. If you just

correlate this with the MIPS32 architecture pipeline, you are trying to say that for multi

cycle operations in the EX stage, you are trying to reduce that time to half. The EX stage

executes faster. This will result in higher throughput, and of course reduced latency of

execution.

(Refer Slide Time: 16:53)

And here there was not much consideration on reducing the number stages in a pipeline

to convert it into a RISC kind of architecture. It had a very complex pipeline comprising

of 20 stages where the complex instructions were directly mapped and executed.

For branch instructions because of the deep pipeline branch mis-predictions were pretty

high, but because of the simpler stages, the clock frequency could be made very high and

performance could be made reasonably on the higher side. Various techniques to hide the

penalties in the pipeline were also implemented, parallel execution using superscalar

kind of processing, buffering particularly in the load store units and speculation. You

have already seen in branch you can speculate, you can assume taken or not taken.

And by special hardware control instructions were executed dynamically and also out of

order. What is the meaning of out of order? Like for example, say you are fetching some

instructions, but you find that one of the instructions cannot start execution because there

is a hazard. It requires an operand that depends on an instruction which is already

executing.

So, what it will do? It will go to the next instruction see that whether we can execute the

next instruction, if it finds there the next instruction is an independent instruction which

can be executed, it will execute it first. This is called out of order execution.

(Refer Slide Time: 18:50)

So, next came the so-called core architecture. The multi core architecture came from this

family. Here you had multiple cores and again hardware visualization by using

multithreading. Here the pipelines were made simpler; instead of 20 stages in Netburst it

became 14 stages. The first version used 2 cores, they had dedicated L1 cache and shared

L2 cache. L3 cache was not there in this family, and there was a concept of macro-fusion

where two program instructions logically can be executed as one micro-operation, one in

the first core, other in the second core. This is a high-level view, well it started to use

some intelligent power capability where runtime power consumption of the execution

core was measured, and accordingly, it was controlled. The temperature was also sensed;

depending on the temperature the speed adjustment was done, lot of sophisticated

features is incorporated here.

Then advanced power gating for low power, where some individual processor logic

subsystems were turned on and off depending on whether they are required or not. And

there was a separate pre-fetching unit that was extended to support instruction fetching

by two cores in parallel.

(Refer Slide Time: 20:31)

Then came the Nehalem architecture that is the beginning of the kind of cores that we

see today, i3, i5, i7. It is from the Nehalem architecture the family of processors was

introduced. So, core i7 was primarily meant for business and high consumer markets.

Today, we want these i7 processors to be used inside our laptops also for daily use.

So, the cost has gone down, power consumption has gone down. Similarly i5 was meant

for mainstream consumer market, and i3 for entry-level market. Some of the features of

Nehalem that started to appear was that the memory controller was integrated within the

chip, and the power management was made more sophisticated. They are multiple power

states like high power, medium power, low power. The operating system can initialize

the power state of the processor, and accordingly run programs on that power state.

Depending on that, you can conserve battery or you can run your application faster

whatever you want. And there are several improvements made to the pipeline using

branch predictors, sophisticated translation lookaside buffers, etc. Also here the third

level of cache L3 was introduced, and of course, hyper threading support was there.

(Refer Slide Time: 22:11)

Some of the design considerations here was that hyper threading was again introduced in

this family because there were several application that demanded larger number of

threads. All the cores were placed on the same integrated circuit die, it was a single chip

and the first two levels of the caches were private to the core, while the L3 cache was

shared among the cores.

Here the number of cores were either 2 or 4, both these 2 kind of families were there.

(Refer Slide Time: 22:55)

Then came the Sandy Bridge architecture. Here some vector extensions were made to the

processor, and there was a separate engine that was called AVX advanced vector

extension.

Secondly the GPU was also integrated on the same die. There was a feature called turbo

boost technology that also appeared. Here the system can automatically check the

temperature of the chip; if it finds that the temperature is not too high, then at least for a

few seconds it can go in a turbo execution mode where the frequency will be increased.

Of course, heat generated will also be increased but you can run your programs much

faster.

So, for a few seconds you can move to a turbo boost mode and you can execute some

applications very fast, but you cannot do it in a sustained manner because the

temperature of the chip will be going up quite significantly. Inside the die there was

some ring kind of interconnects that was proposed to connect the cores. And also the

memory management unit and the memory controller was on chip.

(Refer Slide Time: 24:38)

Then came the Haswell architecture that is one of the latest. Here the branch prediction

was made much more sophisticated using lot of hardware support. And there was some

improvement in the front-end like the TLB and the cache misses there were some

speculative processing here; multiple cache misses were handle in parallel to hide the

individual latencies. As I said branch prediction was improved to a great extent. For the

load/store unit there were much deeper buffers; you could fetch larger number of

instructions and keep them in the buffer; and from the buffer you can issue them to the

pipeline as and when required.

Suppose you have 16 instructions in a buffer. You can decide out of those 16 which

instruction to execute next. So, you can have out of order execution also. Here you have

larger number of execution units, it is actually highly superscalar. The execution units are

made more efficient, latencies are shorter, and again to support this increased speed the

load/store bandwidth is also increased.

(Refer Slide Time: 25:59)

Let us look at this picture. This illustrates Intel’s philosophy of developing newer

generation of processors; this is called the tick-tock development model.

The idea of tick-tock development model is like this. Intel comes up with a new

architecture based on the present fabrication technology, this is called tock architecture.

Then it moves to tick, which means the same architecture is reimplemented using a better

fabrication technology. Then in the next generation you again move from tick to tock;

that means, a new architecture family with the same technology, then again tick a better

technology comes you move the same architecture with a better technology. You see in

this diagram Merom was one of the older architectures; this was fabricated using 65

nanometer technology; this was tock.

Now, the same micro architecture was moved to a new process this was given a different

name this is called Penryn; the same architecture was re-fabricated using 45 nanometer

technology, this is tick. Then in the next generation a new micro architecture was

proposed in the same 45 nanometer technology called Nehalem, then we move to a next

generation which was the same micro architecture, but with a better technology 32

nanometer this was called Westmere, then new micro architecture with the same

technology 32 nanometer, this was called Sandy Bridge.

You move on to the new process 22 nanometer, this was called Ivy Bridge. Now a new

micro architecture based on 22 nanometer, this is Haswell. Like this Intel likes to use the

tick-tock kind of an architecture because it comes up with some architectural

advancements, implements it with the present day technology, let it run for some time, by

that time some newer technology of fabrications are available, port it to the newer

technology. In this way it just advances.

With this we come to the end of this lecture, where we very briefly looked at a couple of

case studies, one was that of a graphics processing unit and the other was the evolution

of the Intel family of processors.

Thank you.

