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Lecture – 63
Some Case Studies

In this lecture, we shall be looking at case studies of some modern day processors that

we see around us. We shall be basically looking at two such, one is that of a so-called

graphics processing unit  or GPU, and the other is  the evolution of the Intel  class of

processors. 
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Let us try to explain what a graphics processing unit is. Traditionally GPU were used as a

graphics accelerator  for a processor, because with the years  the requirements and the

demand of graphic processing have increased. The processor with the help of its own

instructions,  it  will  become very difficult  for it  to handle all  the graphics processing

tasks.  The trend is  that  a  separate  chip  or  a  processor  is  used  dedicated  for  all  the

graphics, multimedia, animation kind of applications that has come to be known as GPU.

So, GPU is a processor that is optimized for graphics computations, both in 2D and 3D.

These processors have some very specific features that help in video processing, visual

computing,  etc.  Essentially  a  GPU  is  a  highly  parallel  highly  multithreaded

multiprocessor. We talked about parallel processing briefly earlier. A GPU is like a very

highly  parallel  computer  architecture  which  resembles  the  SIMD kind of  processing

where there are number of simple processors that are under control of a single control

unit. The idea is something like that. With the help of very specific instructions, it can

provide real time rendering of videos and similar applications. 

The interesting thing is that because of its inherent architecture, it is a highly parallel

SIMD machine. So, why use it only for graphics, we can also use it as a scalable parallel

computing engine to execute some applications. In general, we can have a heterogeneous

computing system where the parts of the competition that can be parallelized can run on



GPU, while the other part can run on a conventional CPU. You will see such computer

systems available today where CPU and GPU are residing inside the same box. 
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Some of the characteristics of GPU is that it is based on the SIMD mode of computation

for processing. There are large numbers of ALUs, it goes in the order of 1000s. In a

normal CPU, we talk about 2 core, 4 core or 6 core, but here, we are talking about 1000s

of very simple processors that are basically ALUs. Such kind of architecture can be used

in applications where you are processing on large arrays or vectors of data, and there is

high parallelism available in the application. Not only the ALUs, each such processing

unit also contains some small local memory so that some local data can be loaded and

processing can be carried out parallely on all the processing units. And of course, there

has to be a sophisticated load store unit.  From the memory, you may have to load a

vector or array of data, similarly you may have to store a vector or array of data.



(Refer Slide Time: 05:16)

Today you have many parallel computing systems in the market that combines CPU and

GPU. For applications where the number of threads are very less or which does not use

multithreading,  CPUs work better, because CPUs with a few threads are much more

efficient, their instruction sets are much more powerful their operation latency is also

less.

But if you think of programs that have thousands of threads; then running them on a

CPU may not be that efficient. Here GPUs come into the picture. GPUs can provide very

high throughput for multithreading kind of application where the number of threads are

very large. There are applications where we use both kinds of computing, the sequential

parts can be running on the conventional CPU, and the numerically intensive parts that

are heavily multithreaded can run on GPUs. There are GPUs that can consist of up to

1000 cores. 
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Now, I am showing you a typical architecture diagram of a GPU. You see the processors

are divided into clusters, they are not places together they are placed in clusters. In this

example, you can see each cluster is having 8 + 8 = 16 cores, and there are 8 such. So, 8

x 16 = 128 cores here. Each of these clusters is having data cache from where data can be

loaded and stored, and there is a bus that connects these clusters to load store units. Now

to increase the bandwidth between the memory and the cores, there can be multiple load

store units that can run in parallel. Here I am showing 6 load store units.

There is a thread execution manager, which is more in the software part. The threads can

be scheduled on these clusters and inside the cluster, there will be a simple operating

system where depending on the available cores, a thread will be running on one of the

cores. This is also a feedback path. As a result of computation, the thread manager can be

informed and it can act accordingly. We have a highly parallel computing system where

these so-called cores can be very simple as compared to a normal processor core. But

suppose there are 128 cores, I can potentially carry out 128 multiplications at the same

time, I can carry out 128 additions at the same time.

This is the advantage of vector or array processing.
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Let us digress a little bit, let us look into one question. The x86 family of chips that you

know is based on CISC architecture; do they use microprogramming because there is a

dilemma that I talked about earlier? Towards the beginning of the class, you have seen

that the RISC architectures provide you with an implementation that on the average runs

faster than an equivalent CISC architecture platform. So, a program will run faster on a

RISC architecture  as  compared  to  a  CISC architecture,  this  has  been found through

experiments.

Now, the question is because of legacy reasons, because of the requirements of backward

compatibility, the Intel series of processors that are most widely used in the world today

are stuck with this  CISC kind of architecture.  So,  are  they compromising  on poorer

performance this  is the question.  The dilemma that I  am talking about is that;  RISC

architectures  execute  instruction  faster  than  CISC,  and  RISC  architecture  can  be

efficiently implemented using hardwired control. But in CISC architecture because of the

fact  that  some of the instructions  are  very complex,  if  you  want  to  build a  pipeline

directly from there, the pipeline may become quite complex. There can be a compromise

you can have make.

For the complex instruction sets, you can use microprogramming to break them up into

simpler instructions. And at the next level you can have a RISC kind of an architecture



that  will  be  executing  the  simpler  instructions  using  a  combination  of  micro

programming and hardware control.
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So, what I have said is that the Intel processor chips are based on CISC instructions, they

use in the first step microprogramming to break the complex instructions into simpler

sub-operations, but here we note that all instructions need not be broken, there may be

some instructions that are already like RISC, they need not have to go through this.

These sub-operations are very similar to RISC kind of instructions. So, at the level of the

CISC instructions, you can regard that we are using microprogramming, but after the

instructions are broken up into this RISC kind of instructions, you may consider that we

are using hardware control to execute those instructions in a very efficient and compact

pipeline.
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So pictorially it can look like this. You have CISC instructions at the top level, then you

have microprogramming that will be translating them into simple operations, which are

RISC like instructions. These in turn will be executed on a pipeline, here I am showing

the pipeline of MIPS32; this means, something similar to this.

Just  using  hardware  control,  you  can  execute  these  RISC-like  instructions  on  the

pipeline. This is how instructions are typically executed on modern day Intel processors.

(Refer Slide Time: 13:10)



Now, I shall be looking at the evolution of the Intel processor. We shall not be going into

the details because it may involve a lot of advanced topics that we have not covered in

the class. I shall be trying to give an overview of how this evaluation has taken place,

and  what  are  these  different  families  mean.  You  have  been  hearing  about  the  Intel

processor families, their coming through so many generations like Nehalem, Ivy bridge,

Sandy bridge, etc.

So, what are these actually? Let us very briefly go through this. The point is that over the

years,  there  have  been architectural  advancements  that  have  taken place  in  the  Intel

processor families. Some of the earlier architectures were called Netburst that was not so

popularly  known.  Then  core,  you  have  seen  the  core2-duo  kind  of  processors,  then

Nehalem, Sandy bridge, Ivy bridge, Haswell; these are some names you may have heard.

Let us look briefly what are the features.
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The first of these architectures is the Netburst architecture. The first thing was that it

used hyper threading. Hyperthreading uses some kind of virtualization where a single

processor  appears  like 2 logical  processors;  as if  2  threads  are  running on the same

processor.  To  the  threads  the  processor  seems  to  be  a  separate  dedicated  virtual

processor. Because you have 2 threads you can say that there are 2 virtual processors that

run those 2 threads.  Each of these logical processors had their  own sets of registers,

which means we had 2 different register sets, one for thread 1, one for thread 2.



By doing  this  resource  utilization,  performance  can  be  improved  to  a  great  extent.

Because you see, whenever you use multithreading with a single set of registers, when

you switch from one thread to the other, you may have to save some registers and restore

the new registers. But here because there is separate set of registers, thread switching is

very fast. You simply switch to the other register set. There was another concept here that

was  called  the  rapid  execution  engine,  where  ALUs  were  running  faster  than  the

processor.  The  ALU  clock  was  running  at  twice  the  frequency  as  compared  to  the

processor clock.

The basic integer operations were executing in half the processor clock tick. If you just

correlate this with the MIPS32 architecture pipeline, you are trying to say that for multi

cycle operations in the EX stage, you are trying to reduce that time to half. The EX stage

executes faster. This will result in higher throughput, and of course reduced latency of

execution.
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And here there was not much consideration on reducing the number stages in a pipeline

to convert it into a RISC kind of architecture. It had a very complex pipeline comprising

of 20 stages where the complex instructions were directly mapped and executed.

For branch instructions because of the deep pipeline branch mis-predictions were pretty

high, but because of the simpler stages, the clock frequency could be made very high and

performance could be made reasonably on the higher side. Various techniques to hide the



penalties  in  the pipeline  were also implemented,  parallel  execution  using superscalar

kind of processing, buffering particularly in the load store units and speculation.  You

have already seen in branch you can speculate, you can assume taken or not taken.

And by special hardware control instructions were executed dynamically and also out of

order. What is the meaning of out of order? Like for example, say you are fetching some

instructions, but you find that one of the instructions cannot start execution because there

is  a  hazard.  It  requires  an  operand  that  depends  on  an  instruction  which  is  already

executing.

So, what it will do? It will go to the next instruction see that whether we can execute the

next instruction, if it finds there the next instruction is an independent instruction which

can be executed, it will execute it first. This is called out of order execution.

(Refer Slide Time: 18:50)

So, next came the so-called core architecture. The multi core architecture came from this

family.  Here  you  had  multiple  cores  and  again  hardware  visualization  by  using

multithreading. Here the pipelines were made simpler; instead of 20 stages in Netburst it

became 14 stages. The first version used 2 cores, they had dedicated L1 cache and shared

L2 cache. L3 cache was not there in this family, and there was a concept of macro-fusion

where two program instructions logically can be executed as one micro-operation, one in

the first core, other in the second core. This is a high-level view, well it started to use

some intelligent power capability where runtime power consumption of the execution



core was measured, and accordingly, it was controlled. The temperature was also sensed;

depending  on  the  temperature  the  speed  adjustment  was  done,  lot  of  sophisticated

features is incorporated here.

Then  advanced  power  gating  for  low power,  where  some individual  processor  logic

subsystems were turned on and off depending on whether they are required or not. And

there was a separate pre-fetching unit that was extended to support instruction fetching

by two cores in parallel.
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Then came the Nehalem architecture that is the beginning of the kind of cores that we

see today, i3, i5, i7. It is from the Nehalem architecture the family of processors was

introduced. So, core i7 was primarily meant for business and high consumer markets.

Today, we want these i7 processors to be used inside our laptops also for daily use.

So, the cost has gone down, power consumption has gone down. Similarly i5 was meant

for mainstream consumer market, and i3 for entry-level market. Some of the features of

Nehalem that started to appear was that the memory controller was integrated within the

chip, and the power management was made more sophisticated. They are multiple power

states like high power, medium power, low power. The operating system can initialize

the power state  of  the processor, and accordingly run programs on that  power state.

Depending on that,  you  can conserve battery or  you  can  run your  application  faster

whatever  you  want.  And there  are  several  improvements  made  to  the  pipeline  using



branch predictors,  sophisticated  translation  lookaside buffers,  etc.  Also here the  third

level of cache L3 was introduced, and of course, hyper threading support was there.

(Refer Slide Time: 22:11)

Some of the design considerations here was that hyper threading was again introduced in

this  family  because  there  were  several  application  that  demanded  larger  number  of

threads. All the cores were placed on the same integrated circuit die, it was a single chip

and the first two levels of the caches were private to the core, while the L3 cache was

shared among the cores.

Here the number of cores were either 2 or 4, both these 2 kind of families were there.



(Refer Slide Time: 22:55)

Then came the Sandy Bridge architecture. Here some vector extensions were made to the

processor,  and  there  was  a  separate  engine  that  was  called  AVX  advanced  vector

extension.

Secondly the GPU was also integrated on the same die. There was a feature called turbo

boost  technology  that  also  appeared.  Here  the  system  can  automatically  check  the

temperature of the chip; if it finds that the temperature is not too high, then at least for a

few seconds it can go in a turbo execution mode where the frequency will be increased.

Of course, heat generated will also be increased but you can run your programs much

faster.

So, for a few seconds you can move to a turbo boost mode and you can execute some

applications  very  fast,  but  you  cannot  do  it  in  a  sustained  manner  because  the

temperature of the chip will  be going up quite significantly. Inside the die there was

some ring kind of interconnects that was proposed to connect the cores. And also the

memory management unit and the memory controller was on chip.
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Then came the Haswell architecture that is one of the latest. Here the branch prediction

was made much more sophisticated using lot of hardware support. And there was some

improvement  in  the  front-end  like  the  TLB  and  the  cache  misses  there  were  some

speculative processing here; multiple cache misses were handle in parallel to hide the

individual latencies. As I said branch prediction was improved to a great extent. For the

load/store  unit  there  were  much  deeper  buffers;  you  could  fetch  larger  number  of

instructions and keep them in the buffer; and from the buffer you can issue them to the

pipeline as and when required.

Suppose you have 16 instructions in a buffer. You can decide out of those 16 which

instruction to execute next. So, you can have out of order execution also. Here you have

larger number of execution units, it is actually highly superscalar. The execution units are

made more efficient, latencies are shorter, and again to support this increased speed the

load/store bandwidth is also increased.
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Let  us  look  at  this  picture.  This  illustrates  Intel’s  philosophy  of  developing  newer

generation of processors; this is called the tick-tock development model.

The  idea  of  tick-tock  development  model  is  like  this.  Intel  comes  up  with  a  new

architecture based on the present fabrication technology, this is called tock architecture.

Then it moves to tick, which means the same architecture is reimplemented using a better

fabrication technology. Then in the next generation you again move from tick to tock;

that means, a new architecture family with the same technology, then again tick a better

technology comes you move the same architecture with a better technology. You see in

this  diagram Merom was one of the older architectures;  this was fabricated using 65

nanometer technology; this was tock.

Now, the same micro architecture was moved to a new process this was given a different

name this is called Penryn; the same architecture was re-fabricated using 45 nanometer

technology,  this  is  tick.  Then  in  the  next  generation  a  new  micro  architecture  was

proposed in the same 45 nanometer technology called Nehalem, then we move to a next

generation  which  was  the  same  micro  architecture,  but  with  a  better  technology  32

nanometer  this  was  called  Westmere,  then  new  micro  architecture  with  the  same

technology 32 nanometer, this was called Sandy Bridge.

You move on to the new process 22 nanometer, this was called Ivy Bridge. Now a new

micro architecture based on 22 nanometer, this is Haswell. Like this Intel likes to use the



tick-tock  kind  of  an  architecture  because  it  comes  up  with  some  architectural

advancements, implements it with the present day technology, let it run for some time, by

that  time  some  newer  technology  of  fabrications  are  available,  port  it  to  the  newer

technology. In this way it just advances. 

With this we come to the end of this lecture, where we very briefly looked at a couple of

case studies, one was that of a graphics processing unit and the other was the evolution

of the Intel family of processors.

Thank you.


