
Computer Architecture and Organization
Prof. Indranil Sengupta

Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur

Lecture – 62
Multi – Core Processors

So far we have seen how we can make our processor faster by using concepts of

pipelining, superscalar, VLIW concepts. These are become very standard concepts

nowadays. Whenever you buy a computer system with an embedded processor, you will

see invariably these technologies built into that as a standard feature. Now the question

comes if you look at the modern processors that goes inside our desktops and laptops and

also our mobile phones today, you have heard about multi-core processors.

So, what it is? Multi-core essentially means I have the capability of fabricating large

systems on a VLSI chip; I am fabricating more than one processor inside the chip, which

is very roughly the concept of multi-core. The question arises why we are actually going

for multi-core, let us try to address these issues in this lecture.

(Refer Slide Time: 01:45)

Our topic of discussion is multi-core processors. As I said a multi-core processor is

nothing but a system, which consists of two or more CPUs. CPUs are typically

independent, they are not strongly connected or they are not dependent on each other.

They can independently execute different independent programs if required.

So, for a multi-core processing system we have two or more independent cores or CPUs.

These cores come inside a single package, you can buy a core i3, i5, i7 processor from

the market. Inside the same package there will be multiple cores, 2 or 4 or 6 whatever.

Now these cores or processors are all fabricated inside the same die within the chip.

There are two alternatives. You can either have a single die; die means a silicon wafer

where the chips are all fabricated. Or you can have multiple dies that are connected or

bonded together inside the same package.

There are multiple cores inside the same package, you buy a VLSI chip inside which

there are multiple cores or processors. Now typically speaking if you look at the modern

processors, the level 1 and level 2 caches are private to each of the cores; however, the

level 3 cache is common and is shared by all the cores. These are symmetric systems

where all the cores are identical, like the core i3, i5, i7 multi-core processors that we use

in our processor systems. These are called symmetric – they are all identical. But in

asymmetric multi-core systems, the cores may have different functionalities.

You think of the multi-core system that goes inside your mobile phones. You have heard

of quad-core, octa-core processors, but there is no reason to believe that all those 4 or 8

cores are identical; they have some specific purposes. Some of them may be specific

DSP cores, some of them may be specific processor cores like ARM, and some of them

may be doing some specific functionality.

(Refer Slide Time: 04:57)

They may be running at different clock frequencies, different instruction set, and

different capabilities; that is called asymmetric.

So, why we go for multi-core? You have earlier heard about Moore’s law. Moores law

says that the number of transistors or gates that you can put inside a single chip will grow

exponential with time; will double approximately every 18 months or so. Now, Moore’s

law somehow has been sustained till now, but regarding the performance demands there

have been some constraints. Like although you can potentially increase the frequency of

the clock, but you are unable to do so, why? Because your chip power consumption

directly depends on the clock frequency, and if you increase it your power consumption

can become unmanageably high and your chip might be burnt out.

So, you will have to limit your clock frequency within a manageable level, simply to

tackle the power consumption issue. There are two possible solutions you can think of.

The first solution can be to replicate hardware. You used two computer systems that are

running side by side, and run them at a lower clock frequency; like for example, just

compare a core that is running a 3 GHz clock, and two cores running at 1.5 GHz clock.

Both will be having the same performance, but the second one will be having much

lower power consumption because power increases in a super linear fashion with

increase in the clock frequency. That is why you will see that in the modern generation of

processors the number of cores is increasing.

I mean over the last ten years or so, the clock frequency has not increased much, 1.5 to

2.5 GHz it still remains within that level.

(Refer Slide Time: 07:22)

Talking about parallel architectures, a very rough classification called Flynn’s

classification goes like this. We categorize depending on the instruction streams and data

streams. First is representative of the traditional single processor or uniprocessor

systems.

(Refer Slide Time: 07:59)

This is called SISD. This means I have a computing system where single instructions are

coming one by one I1, I2, I3 like this. These instructions you are operating on data, data

are also coming sequentially one by one D1, D2, D3.

Suppose I1 is working on D1, I2 is operating on D2, I3 is operating on D3 like that. This

is called single instruction stream single data stream (SISD).

The second classification is MISD. It says that I am feeding several instructions let us

say I11, I12, I1m together; then I feed I21, I22, I2m and so on.

But it says that they are working on single data streams. Like these m instructions are

working on single data. Conceptually speaking it is a little difficult to visualize this kind

of computation where we have a single data, but multiple instructions are working on it.

Strictly speaking, no real systems are there that can fall under this MISD category. But

some people argue that pipeline processing falls under this category. Let us say in the

MIPS32 pipeline there are 5 stages. You can say that there are 5 instructions that are

executing in different stages at the same time; as if there are multiple instructions. They

are working on the same data set; it is not individual data they are calling a data set. For

a program it take some input data it produces some output. That input data you can argue

that it is a data set. Like this you can argue that pipeline processor can be considered as

MISD.

And single instruction stream multiple data stream (SIMD) is something that you can

correlate with vector processors. There a single vector instruction operates on all the

elements of a vector.

There is another kind of architecture that we do not see that much today, vector processor

much more predominant. There were some computers called array processors, which

worked on arrays instead of vectors of numbers. You could arrange the numbers in the

form of an array, typically two-dimensional. But nowadays you do not see that kind of

architecture anymore.

Lastly there are parallel processors, this is MIMD. The multi-cores fall under this

category. There are four cores, four instructions can be executed at the same time, and

they might be working on four different data.

So, broadly speaking this is one way of classifying computer systems depending on

instruction or data stream parallelism.

(Refer Slide Time: 12:06)

Let us look at a single-core computer, the one that falls under the SISD category. The

example that we have taken is similar to what we see inside our PCs or desktops, but not

the desktops of today, rather desktops of earlier years where there were single cores. This

is a typical architecture that you used to see. This is the CPU that consists of arithmetic

logic unit, registers, some other circuits, bus interfaces and there was something called

IO Bridge. This IO bridge had two purposes; it interfaces the CPU with the memory

system with a very high speed bus, and there was a relatively lower speed IO so that the

IO devices could transfer data to main memory and maybe the CPU can also access some

of them.

The IO bus had connections to some USB controllers that provide some USB ports

through which we can connect a variety of devices like mouse, keyboard, and many

others. Through graphic adaptor you can connect your display monitor; various disk

controllers, you can connect to a disk subsystem and there are expansion slots.

(Refer Slide Time: 13:48)

You could add some more devices like network adaptors and others. This was a very

typical kind of architecture and this was your single core. This is a blown up picture of

the same thing, this is technically the core and this is the interface to the external world.

When you talk off a core, every core essentially consists of a register file, ALU, and of

course the control unit. The control unit is not shown here.

(Refer Slide Time: 14:20)

This is the typical motherboard architecture with the terminologies that are used in a

desktop PC. The processor comes here. The processor is typically connected to a chip

that is called the North Bridge, this is a very fast switch. This North Bridge interfaces the

CPU with the memory bus; in the memory bus there can be memory slots. In the slots

you can plug in your memory modules; there are memory modules of various capacities,

you can plug those memory modules depending on how much memory you need.

And on the other side you have a PCI express bus that is typically used to connect high-

speed graphics for your monitors and other things, which need very high speed data

transfer. You have this PCI express bus. And on the other side it is connected to another

switch called South Bridge, this is of relatively much slower speed. South Bridge

interfaces with so-called PCI bus, which consists of several PCI slots through which you

can connect network adaptors and different kind of circuit boards. There are also direct

connections available in modern motherboards, which connects to network interface like

Ethernet, disk interfaces like SATA, USB, audio interface. There is another bus that is

meant for low-speed devices this is called LPC or low pin count bus. This is typically a

serial bus working at a much lower speed.

(Refer Slide Time: 16:29)

This is the rough picture of the motherboard of a desktop. I am showing you pictorially

one of the motherboards here, you can see this is your processor and this is your north

bridge. The fins that you can see is actually heat sink, this is a very high speed chip, and

dissipates lot of power. So, you need a heat sink to dissipate the heat. And this small chip

out here this is the south bridge. These are the PCI slots, these are the memory slots and

the other components. You see this is a motherboard that used to be several years back,

but if you see the motherboard of one of the modern day PCs, you will see that many of

the circuits have been collapsed into a single chip. There are very few chips and a very

small motherboard.

That is why it is possible to squeeze the size of the computer system that much today.

You can have a desktop system where the entire processing cabinet can be as small as a

small rectangular box.

(Refer Slide Time: 17:49)

We looked at one core consisting of a register file, ALU, plus control. Now for multi core

you have several such, and you have a some kind of a fast bus interface using which they

can communicate among themselves, and there will be an interface with north bridge

memory to the outside world.

This is what you have, but this is a very generic picture. Let us look into some more

specifics.

(Refer Slide Time: 18:34)

Broadly speaking multiprocessors can be classified as either tightly coupled or loosely

coupled. Tightly coupled means the processors or the cores have access to common

shared memory, in other words, the processors are all inside the same box. Inside the

same box there are the processors, there is also the common shared memory. When you

buy a computer system, you buy the system along with all the processors and also

memory.

Inter processor communication can take place through shared memory. Like one of the

processor can write some data into the memory, the other processor can read the data

from that memory. The standard multi core architectures usually fall under this category.

But another kind of a multiprocessor architecture is also available, this is called loosely

coupled multiprocessors. This is sometimes also called clusters or cluster computing.

Here there is no shared memory. So, how is the memory organized? Memory is

distributed among the processor; each processor has its own memory, and

communication here is not via shared memory, but through some high-speed

interconnection network.

There are processors, there will be a very high-speed interconnecting switch, the

processors will be connecting via that switch. They will be sending and receiving

messages from other processors. This is how loosely coupled processors work.

(Refer Slide Time: 20:33)

Pictorially a tightly coupled multiprocessor looks like this. You can see the different

cores, each of the cores is having its own instruction and data cache in L1 and also L2.

These are all private to the processors, but typically the L3 cache is common across all

the processors, and of course the main memory is also common.

(Refer Slide Time: 21:18)

Here you see that so many processors are trying to access L3 and the main memory. So,

if you increase the number of processors to say 8, 16, or 32 they will lot of load on this

L3 and main memory. So, there is a scalability issue. You cannot very easily extend to

larger number of cores or processors, because the memory bandwidth requirement will

also increase. In this kind of architecture there is one feature, the memory access time for

all processors is uniform, this is sometimes called uniform memory access or UMA.

Why it is uniform? Because irrespective of which processor you are, the path to access

memory is this same.

(Refer Slide Time: 22:18)

Since the delay is the same that is why it is called uniform memory access.

In contrast loosely coupled multiprocessor look like this. There will be multiple

processors with their own private caches. So, all L1, L2, L3 can be inside this, they will

be having the local memory. They will be connected via an interconnection network. A

processor can access its local memory, and also via the interconnection network it can

access the memory of the other processors.

So, you can see the access pattern will not be uniform, accessing local memory will be

faster, but accessing the other memories will be slower. This is sometimes called non

uniform memory access or NUMA.

(Refer Slide Time: 23:11)

This is also a cost-effective way to scale memory bandwidth, because you see most of

the time when you run a program on a core, it will be accessing its local memory only.

Very rarely it will be trying to access the memory of the other processors. So, in this kind

of architecture, even if I increase the number of processors, scalability will not be that

much of a challenge.

The only flip side is that the communication between the processors is complex using the

switching network and has higher latency. So, when you are mapping some applications

to run on them, you try to map in such a way that most of the time

(Refer Slide Time: 24:08)

they will be accessing the local memory and very rarely they will be accessing the other

processors and their memories.

(Refer Slide Time: 24:26)

Cache coherence is a very important problem; I am trying to illustrate this. Suppose I

have two processors P1 and P2, assume they have their own cache memories C1 and C2.

Let us also assume they have access to a common memory M. So, what may happen

now? You see there can be one block in this memory, this is the block and the processor

might be using this block. So, this block will be loaded in the cache. It is possible that the

other processor is also trying to access this. So, this block will also be loaded in the

cache. Let us say B is the original block; a copy is here and a copy is here. Now the

processor P1 might write something into this block B that will make this block dirty. But

as soon as it writes what will happen you can imagine, these two blocks will become

invalid. Whatever is loaded in P2’s cache will be stale because this block was recently

modified and the copy in memory will also be stale.

This is called the cache coherency problem, where there are multiple copies of the block

that may be located in several places. One of them may be the good version, while others

may be incoherent or wrong. If you can see here same memory block is loaded into two

processor caches, one of the processor updates the data. So, data in the other processor

cache and also memory becomes inconsistent.

There are many methods and techniques that have been proposed to solve this problem.

One is call the snoopy protocol where in the memory bus itself you continuously check

whether someone is doing a write into its local cache. If it does you immediately send the

information to the other memory controls, they can check whether they are also having a

copy of that same block in their cache. If so, they will immediately invalidate. The other

is directory based protocol where you store the information about the blocks in some

central place where the memories are stored. You store that a memory block is currently

held by these processors.

In a processor update you know which are the other processors that will also get affected,

but I am not going with the detail of this protocols here. I just tried to give a very broad

bird’s eye view about what kind of parallel computing platforms are being used today

and what are the different variations therein.

So with this I come to the end of this lecture. In this lecture we tried to give you a broad

classification of computer systems with some examples, what kind of processing or

computing systems fall under which category and some of the problems and issues. If

you are interested to know more detail on this, there are advanced level courses on

computer architecture available; you can get to know about these in those courses.

Thank you.

