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Vector Processors

In  our  last  lecture  we  looked  at  various  ways  of  increasing  the  instruction  level

parallelism  in  a  program.  We looked  at  a  very  well  known  technique  called  loop

unrolling, which is used by compilers to expose more parallelism in a program, and also

enables the compiler to do instruction scheduling or move instructions around to reduce

the  number  of  stall  cycles.  We  also  saw  the  so-called  superscalar  and  VLIW

architectures, which can enhance the performance of a pipeline by allowing more than

one instructions to be issued in every clock cycle. In this lecture let us look one step

further, and see how we can further  parallelize  computations,  but  we are looking at

specific kinds of computations. Computations that are carried out on something called

vectors.
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The topic of today’s lecture is vector processors. Let us try to see first that how we can

look at the constraints in a pipeline and what are the factors that limit its performance.

Broadly there are two factors: the first factor relates to the clock cycle time, like you see

in a pipeline if you can make the clock cycle time faster than obviously, your instruction



execution  will  become  faster.  Your  instructions  will  execute  faster,  you  can  issue

instructions at a faster rate, and this clock cycle  time can be reduced by making the

pipeline  stages  simpler,  which  means  increasing  the  number  of  stages.  But  if  you

increase the number of stages, there will be one difficulty. You see here earlier in the

MIPS32 pipeline even though there were 5 stages only, you saw that there were lot of

dependencies and hazard creating scenarios that were coming. By using forwarding and

other techniques we could reduce most of them, but still for certain dependencies we had

to use some stall cycles.

So, if you increase the number of stages even further, this constraint will become even

more pronounced, and more kinds of dependencies will be showing up. Clock cycle time

reduction by increasing pipeline stages can increase dependencies in general, which can

result in a higher CPI. The second constraint is the instruction fetch and decode rate.

Here what we have saying is that the instructions have to be ultimately fetched from

memory. Earlier we were saying one instruction has to fetched per cycle, but now when

we  are  moving  into  superscalar  and  other  kind  of  parallel  computation,  we  are

demanding that in every clock cycle we need to fetch more than one instructions. Well of

course, this has something to do with the why we are organizing our memory. You have

studied earlier that if we use memory interleaving, we can have some kind of parallel

access. For instance for a 4-way memory interleaving we can access or read 4 words in

every  clock  cycle.  Organization  of  the  memory  also  produces  a  constraint  to  the

maximum memory-CPU bandwidth.
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This processer-memory speed gap is sometimes also referred to as Flynn bottleneck. In

general there is a limit to the number of instructions that can be fetched in every clock

cycle.  Now  that  we  are  moving  on  to  vector  processors,  let  us  see  what  a  vector

processor is. Well here we are operating on entire arrays of numbers called vectors. Let

us  say  there  are  a  total  of  64  numbers.  All  the  64  numbers  taken  together,  we  are

referring this as a vector.
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Let us say A is a vector, B is also a vector. Let us say C is also a vector, where you want

to store the result. I can simply write an instruction like C = A + B. This is an example of

vector  instruction  where  although we had using  a  single  instruction,  but  actually  64

additions are taking place.  The first element of A is added to the first element of B,

second element of A is added to the second element of B, and so on, and the results are

stored in corresponding elements  of the vector  C. In a conventional  processer where

these kinds of vector operations are not there, we had to use a loop. In every loop we

have to add one pair of numbers, then decrement a loop counter, check for 0 or some

condition, then again branch back.

There you see some loop overheads were there, decrementing a counter, branching, but

here it is a single instruction and there are no loop overheads. So, expectedly it should

run faster. As I had said single vector instruction is equivalent to an entire loop, and I had

said no loop overheads are required. For the example for adding two vectors, let us say

the instruction will look like this ADDV V1,V2,V3. The vectors V2 and V3 are added

element by element, and result stored in V1. The single instruction can compute a set of

64  additions.  Each  of  the  elements  can  be,  for  example,  a  double  precision  64-bit

number.
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If  you  can  map  the  vectors  to  the  so-called  vector  registers,  we  can  use  a  single

instruction to add them. Let us now look at the basic vector processor architecture. The



basic hardware is nothing but heavily pipelined scalar unit. The vector processor is an

extension of a pipelined processing unit, where in the execution unit is also pipelined.

Here the arithmetic units are separately pipelined, they can be separately fed with data,

and  results  can  be  picked  up  separately.  So,  all  the  functional  units  will  be  deeply

pipelined to the extent possible so that you can feed data at a faster rate. There will be

two things; there will be an ordinary pipeline scalar unit, and in addition there will be a

vector unit. Vector unit will consist of the vector registers, the arithmetic units and so on.

Inside the vector unit all the functional units like adder, multiplier, and divider etc., they

are all deeply pipelined so that for execution in the functional units the pipeline clock

cycle  time will  be as less as possible.  Now another  thing you see here,  in a  normal

instruction set pipelining when we are feeding a number of instructions sequentially in

the pipe,  there were the situations of hazards,  but for vector operation suppose I  am

adding two vectors A and B storing the results in C, there are 64 operations that are going

on in parallel in overlapped fashion. But all the operations are independent. There is no

dependency across successive computation. So no question of hazards is coming in, this

is another very good thing for vector processing.

(Refer Slide Time: 10:29)

This kind of deep pipelining does not result in hazards, because the computations are

independent. Let us look at a hypothetical vector processor that is an extension of the

MIPS32 architecture. This is a very high-level schematic; let us say there are 8 vector



registers  V0 to  V7.  Let  us  assume each  of  this  vector  registers  can  hold  64  double

precision numbers.

Each of the registers is actually a set of 64 64-bit registers, there are 8 such. And in the

vector registers, two of them can be read and you can write into one of them every cycle.

And in addition there are the standard scalar registers as you saw in MIPS32, the integer

and the floating point registers, there is a memory system. The memory will be interfaced

to the scalar register just like as you saw earlier, but in addition there will also be a vector

load/store unit, through which you can load an entire vector from memory into one of the

registers, or you can store one of the vector registers into memory, and on this side you

have the vector functional units.

So, you see there are many vector functional units, each of them are having two inputs

and one output, and they can be fed concurrently. The bandwidth of this bus should be

high enough so that while some vector addition is going on in parallel, a vector multiply

should also be going on. It really does not mean that these arrows will mean that one and

two data are coming together; it may be more than two. In general if there are 5 such

functional units, then 10 such numbers that can come in every clock, and similarly 5 of

the results can be stored in the registers in every clock. 

(Refer Slide Time: 12:38)

As I  said there are 8 vector  registers,  each of which can hold 64 numbers,  each are

double precision or double words. Each vector register has two read ports and one write



port as this diagram shows. It is not just for the whole bank, but for each of the vectors

and for the vector functional units they are all fully pipelined; they can start an operation

every clock cycle. And if there is any dependency across the functional units, like I am

carrying out a vector addition, the next instruction is a vector multiplication that uses one

of the vectors that is produce as the result. There will be latency or a stall. 

All the 64 operations can go on in an overlapped way without any stalls. If there any

dependencies across instructions then stall cycles can be inserted.

(Refer Slide Time: 14:07)

Regarding the vector load/store unit as I said that is also fully pipelined, and it allows

fast loading and storing of the vectors, and to allow this the memory system has to be

very deeply interleaved. So, 2-way or 4-way interleaving will not do; may be it will be

16-way or 32-way or 64-way interleaved. So, memory organization has to be much more

complex if  we have to read a whole 64 words vector in one cycle  or in a very few

number of cycles.

So, you need to modify the memory system as well. After the initial latency that can

indicate the access time of the memory, you can access the words one per cycle. And in

addition  to that  the scalar  registers  are also there like MIPS32, these are the normal

integer  and floating  point  registers.  These  registers  can  be  used  to  carry  out  integer

operations of course, but they can also be used to provide data as input to the vector

functional units. There are some operations where you may want to add say a scalar



number to all the elements of a vector, then the scalar number can come from one of the

scalar registers. Moreover you can also use the scalar registers to compute the memory

address, which will be used by the vector load store unit, from which memory address

you want to load or store.

(Refer Slide Time: 15:48)

So, scalar and vector registers can be used together. Let us take an example. We look at a

computation like this: Y = a * X + Y, where X and Y are vectors and a is a scalar, this is

sometimes called single precision SAXPY or double precision DAXPY loop. Here we

are assuming that X and Y are both vectors of size 64 and a is a scalar. For convenience

let us assume Rx is a register, that contains the starting address of vector X in memory,

Ry is  a  register  containing  the  address  of  Y, and the  scalar  register  R1 contains  the

address of the scalar number a. The conventional MIPS32 code will look like this. 

The equivalent vector computing code will look like this, here we are loading the scalar

number into F0 as usual, this is the load vector instruction and so on.

One big advantage of vector processor is that there will be only 6 instructions, which

drastically reduces the dynamic instruction bandwidth.
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Dynamic instruction bandwidth is equal to the number of instructions that are actually

getting executed.

Let us look at the MIPS32 code version here the loop was this 1 2 3 4 5 6 7 8 there were

8 instructions in the loop, and the loop was going 64 times. So, 8 x 64 = 512, and outside

the loop there are two more instructions 514. But here there are only 6. So, earlier 514

instructions  were fetched and executed;  now only 6 instructions  will  be fetched and

executed. This is a great reduction in the instruction bandwidth; similarly the stalls and

pipeline interlocks are also greatly reduced because in the original MIPS32 version there

will be lot of dependencies.

But here within the vector instructions there are no dependencies, but across there can

be. Like here you will loading V1, next instruction V1 is used like that. So, in vector

processor, the stalls are required once per vector operation; rather than once per vector

element. In the original version stalls were occurring in every iteration; here within a

vector instruction there are no stalls, but between vector instructions that can be stalls.

In general, the pipeline stall frequency is also reduced by almost 64 times, these are the

main advantages. Now there are something called vector start up and initiation rate.
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You see the running time for the vector operations has two components, one is called the

start up time. Start up time means after how much time the first result will be available,

this depends on the depth of the pipeline. This is determined by the depth of the pipeline.

If I say that my start up time is 8, this will mean that my pipeline depth is 8, and it will

take 8 clock cycles for the first result to come out. And initiation rate is that once the

vectors are being operated on, what is the delay with which I can feed the successive

elements of the vectors?

It is usually one per clock cycle because the execution units are deeply pipelined.  In

general if you have a vector operation that is operating on n elements, typically n <= 64,

then it will be equal to the start up time plus number of elements multiplied by initiation

rate, as I said initiation rate is typically one. So, this will be the total time to compute the

operation.
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Let us take a simple example. Let us say this start up time of a multiply operation is 12

clock cycles, which means it is a 12 stage pipeline. So, after starting up initiation rate is 1

per  clock cycle.  We are  trying  to  estimate  what  will  be the  number  of  clock cycles

required per result for a 64-element vector.

You see for all the 64 elements you can use the previous formula to compute the total

time. Now I want time per element. So, we are computing 64 results divide by 64. It is

1.19. 
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There are certain factors that affect the start time and initiation rates. Like for register to

register operations the start up time will be equal to the number of stages in the pipeline,

and initiation rate is typically one.

Typical depths are as follows. For floating point operations, addition/subtraction require

6  stages,  taking  into  account  the  mantissa  alignment,  normalization  everything  and

floating point multiply requires 7 stages.

But if there is an a dependency between vector operations; that means, if a computation

depends on an uncompleted computation due to a previous instruction, then some stall

cycles may have to be inserted. Typically extra 4 cycles are required.

(Refer Slide Time: 26:10)

Let us take an example like this where the operands are all independent. There is no

dependency,  and  you  can  proceed  without  any  penalty  or  delay.  But  if  there  is  a

dependency then in the previous slide I mentioned some extra cycle start up penalty is

there, that penalty have to be given for the second instruction. Even with forwarding we

have to wait for this operation to be complete, then you can forward it here.

The sustained rate is defined across a number of operations, what is the time per element

for a collection of operations. Let us take an example.
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Let  us  say  there  are  two  instructions  like  this,  multiply  followed  by  add  when  the

operands are of length 64. For the multiply instruction the starting time is 0 because in

the clock cycle 0 it is starting. So, completion time will be 71. And add will start after

one clock cycle, its starting time will be 1. So, completion time will be again 71. In total

71 clock cycles we are completing 64 + 64 = 128 floating point operations.

(Refer Slide Time: 27:54)

So,  128  floating  point  operation  in  71  cycles  mean  1.8  flops  per  cycle,  this  is  the

sustained rate. Talking about the overheads of load store unit we just mentioned it earlier,



we have the memory here.  The memory has to be very heavily interleaved,  you can

access these banks in parallel, you can store them temporarily in registers, and through a

MUX/DEMUX network the registers can be read or written at a very fast rate to the CPU

from the CPU. For load operation this start up time will be the time to get the first word

from memory into register; it will be equal to the access time of the memory. So, how

much time is required to get the data here and the MUX to forward the first data, and

since  the  remaining  data  are  already  registered  you  can  feed  them  one  by  one  at

successive clock. So, vector initiation rate will be equal to the rate at which new words

can be fetched. This memory organization has to be done very carefully such that very

high data transfer rate can be sustained. 
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For store operation start up time is not that important, because store does not produce

results in some vector register, it is storing into memory. But if there is a load instruction

which follows this store and uses the same data, then the load may have to wait. These

are the typical start up penalties.
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Sometimes you may have a situation where you do not have to operate on the whole 64

element vector, may be we have vector of size 30, then there is a register called Vector

Length Register. You can load it with 30, only the first 30 elements would be operated

on. Second one is loading and storing vectors with strides. This is something like this,

normally when you load a vector from memory you load them from consecutive memory

locations. That is one way, other way is that you can specify something called a stride or

a gap, let  us say the gap is 10. The first  vector element is loaded from say memory

location 0, the second location second is loaded from 10, third is loaded from 20, 30, 40

and so on; that means, at gap of 10. This is sometimes used, for example, if you have a

two dimensional  array, they are typically  stored in memory in  row major  or column

major order. Suppose you want to load a row or a column in a vector register.

If we used stride you can do both. For column if it is stored in row major order, if we

have a gap you can access the elements in column by specifying the stride, you can also

load the column in a vector register. 

The third is called strip mining, which says that well your vector register is of length 64,

but suppose my original program is running for let us say 200 cycles. So, what do we do?

So, 64, 64, 64 we can do it for three times. So, it will be 192, and 8 vector elements will

be left. This is called strip mining. I will be factoring it out 64, 64, 64 and whatever is

left out I will be using as a separate 4th vector operation.



These  are some concepts  that  are  there along with vector  processing,  which  helps  a

programmer to write vector programs. With this we come to the end of this lecture. I

tried  to  give  you  a  brief  overview about  what  vector  processing  is  and  how vector

computing works. If you look at a real vector processor that is available commercially,

you will see there are lot of other details involved there, but here we are not going into

those details.

Thank you.


