
Computer Architecture and Organization
Prof. Kamalika Datta

Department of Computer Science and Engineering
National Institute of Technology, Meghalaya

Lecture - 06
Number Representation

Welcome back. We shall now be moving on with the detailed discussion on various

aspects of computer architecture and organization. As we know that typically digital

circuits work on binary number system which can ultimately be mapped to some tiny

electronic switches. So, in this lecture we will be considering this number representation

in computer systems.

(Refer Slide Time: 00:54)

We all are accustomed with the so called decimal number system. In decimal number

system, we represent ten digits 0 to 9; and every digit position has a weight which is a

power of 10, called base or radix. Let us take an example 234, so, it can be represented

the weighted representation like this: 4 x 100 in the unit position, then 3 x101 in the tenth

position, and 2 x 102 in the hundredth position. Similarly, we can also represent both

integer part and fractional part, where for the integer part we multiplied this number with

100, 101, and 102 and here we start with -1. So, we multiply 6 x 10-1, 7 x 10-2, and so on.

(Refer Slide Time: 02:26)

Coming to binary number system, we all know we have two digits 0 and 1. And every

digit position has a weight that is power of 2; in decimal number system we have power

of 10; and here we have power of 2. So, the base or radix here is 2. Let us see how we

can represent a binary number. So, 1 1 0 is this number: 0 will be multiplied with 20, the

next number will be multiplied with 21, and the next will be multiplied with 22. So, this is

the weighted representation of this number. Similarly, we can also represent a fractional

part. So, 101.01, it can be represented, so this will be 20, this will be 21, and this will be

22 in the same way. And again in the fractional part we will be multiplying with 2-1, 2-2,

and so on. So, this will be 0 x 2-1 + 1 x 2-2 and so on.

(Refer Slide Time: 04:13)

Now, let us see some conversions, like binary to decimal, decimal to binary, binary to

hexadecimal, hexadecimal to binary. So, we will be looking into all those things. So,

when we are doing binary to decimal conversion, each digit position of a binary number

has a weight and that weight is some power of 2. So, our binary number can be

represented like this, this is the integer part and this is the fractional part. The integer part

starts from b0, b1, bn-1; and the fractional part b-1, b-2 to b-m, where bi are the binary digits.

So, the corresponding value in decimal will be all these binary digits multiplied by 2 i. So,

if this digit is b0, then b0 x 20. If it is b1, then it will be b1 x 21 and so on, and here b-1 x 2-

1, and so on, till b-m. So, the corresponding value in decimal can be represented by this

summation.

(Refer Slide Time: 06:14)

Let us takes some examples, which will make this clear. So, we have a number 1 0 1 0 1

1, this is a binary number, how we can convert it into a decimal number? We start with

multiplying 1 with 20 and so on, and we get 43 in decimal. Similarly if we have a

fractional part to convert it we have to multiply this with 2-1, and so on. Similarly, if we

have a both integer part and fractional part in the same way we can consider the first part

as like this and the next part like this and finally, we get a value like this.

(Refer Slide Time: 07:43)

Now, let us consider decimal to binary conversion. So, we have seen binary to decimal

conversion. Now, we will be seeing decimal to binary conversion. Consider the integer

and fractional part separately. Here we have to consider the integer and fractional part

separately let us see how. So, what we do for the integer part, for the integer part we

repeatedly divide the given number by 2 and we go on accumulating the remainders until

the number becomes 0.

(Refer Slide Time: 08:20)

So, let us take an example. So, here we can see that the number is 15. What we say that

we repeatedly divide the given number by 2, so we are dividing the given number by 2

we are getting a quotient and we are getting a remainder. And we are going on

accumulating the remainder that is here it is 1; again we do it, we get here 3 and the

remainder becomes 1. Again we divide it and we get the remainder as 1 and the quotient

as 1 as well. And what we do finally, we arrange it in reverse order. So, in reverse order

when we arrange this 15 in decimal is now converted to 1 1 1 1 in binary. So, here this is

what it has been said that for the integer part we repeatedly divide a given number by 2

and we accumulate the remainder until the number becomes 0 and then we arrange it in

reverse order the way.

Next, for the fractional part, we repeatedly multiply the given fraction by 2, and then we

accumulate the integer part. If the integer part is 1, we chop it off. And then finally, while

arranging we will be arranging the order the integer parts in the same order.

So, now let us see this with an example of 0.25. We multiply it by 2 and we get 0.50. So,

here 0 is accumulated this is the integer part which is 0. Next, again we take the

fractional part we do not do anything with this part. So, we take the fractional part, and

again we multiply it by 2. And what we get we get 1.00, where we get this fractional, this

integer part as 1. So, here we can say that 0.25 in decimal can be represented as 0.01. So,

this point remains and what we got is 01 we are not writing this in reverse order rather

we are writing it as 0 1 0 1. So, this is the decimal this is the binary representation of this

particular decimal fractional part. This is how we do it. And we can continue doing it

because it is not necessary that we will get 0 0, we can get any number. So, we can do it

for some number of times and we get the result.

(Refer Slide Time: 11:49)

Now, let us see some more examples. Here in the same way 239 in decimal can be

converted to binary where we get 1 1 1 0 1 1 1 1, which we write in reverse order.

Similar way, let us take another example which is 64 we go on dividing with the number

by 2 and we accumulate the remainder and finally, what we get is 1 0 0 0 0 0 0.

Let us take some example with the fractional part. So, here we see that 0.634 in decimal

how we can convert it into binary. In thesame way we multiply it by 2 and we keep the

integer part. And then we take the fractional part again and keep on multiplying with 2.

And again after multiplying in we keep the integer part and again with this fractional part

we multiply it again with 2, and keep on doing it.

Let us say we have done it till 1 2 3 4 and 5 times and we write it in this order. So, the

value will be point 1 0 1 0 0 and if you want to do it for some more you can also do that.

So, this is how we can convert a fractional decimal part to binary. Similarly, we can take

an example of a number, which is having both integer part and fractional part. So, the

integer part can be converted and it is represented by this and the fractional part is

converted and it is represented by this, and finally you can write the answer in this

fashion.

(Refer Slide Time: 14:19)

Now, coming to hexadecimal number system. Now, why do we require hexadecimal

number system? Now, let us say you have to represent a 32-bit number or a 64-bit

number. So, if you have to represent a 64-bit number in binary, you have to represent it

as 0 1 0 1 up to 64 bits, or if it is a 32-bit number then you have to write that 0 1 0 1

whatever is the number till 32 bits. So, it will be really very long. Hexadecimal number

system is a compact way to represent binary numbers. This is an efficient way where

what we do basically is group four binary digits and represent by a hexadecimal digit.

And the hexadecimal digits are 0 to 9, and A to F. 0 to 9 we already know and starting

from 10 is represented as A, 11 is represented as B, 12 as C, 13 as D, 14 as E, and 15 as

F. So, we have these representations starting from 0 to F in hexadecimal number. So, a

group of four numbers will be replaced with a single digit. If we encounter 1 0 1 0, we

will replace this with the digit A.

(Refer Slide Time: 16:28)

So, if we have to represent a 32-bit number, we can represent by only 8 digits. How,

because 1010 is A, 0000 is 0, 0001 is 1, 0010 is 2, this is 8, this is 9, this is 0, this is 1.

So, this entire number A0128901 is the hexadecimal representation of this 32-bit number.

(Refer Slide Time: 18:14)

So, we will move on. So, let us see how we can convert this binary number to

hexadecimal. So, for the integer part, we scan the binary number from right to left, and

we translate each group of four bits into the corresponding hexadecimal digit. And if

required we add leading zeros that means, if it is required that we need to add some more

bits to make it a group of four then we can add those bits.

So, for the fractional part, what we do we scan the binary number from left to right. So,

there is a difference between the integer part and your fractional part. In the integer part,

we are doing from right to left; and in the fractional part, we are doing from left to right.

And what we do we translate each group of four bits into the corresponding hexadecimal

digit that I have already shown you. And for doing so if it is required then what we do we

add trailing zeroes into it.

(Refer Slide Time: 19:54)

Let us take some more examples. Let us say we have a number which is represented in

binary 1010. So, we group it from we group this from right to left. So, first we group this

four bit, next four bit, then next four bit and then we find out that we have a group of

three groups having four-four bits. So, what is 1011 -- it is B. What is 0100 -- it is 4 in

hexadecimal; and 0011 is 3. So, we have converted a binary number into hexadecimal

representation.

Similarly, here you see you do not have a group of four. So, what you have to do you

have to add some zeros in the beginning. So, here we group it four here also we group it

four, but here we cannot group it four. So, you add 2 more zeros. So, 2 leading zeros are

added to make it 0010 which is equivalent to 1010 is A, and 0001 is 1. Similarly, for the

fractional part we scan from left to right. So, scanning this from left to right, so we have

to group into four-four bits. So, this is the first four bits and this is the next four bits. To

make it four, we have to add a trailing zero. So, a trailing zero is added to make it a

group of four bits. So, this 1000 is 8 and 0100 is 4 which in hexadecimal.

Similarly, for this is the integer part and this is the fractional part. For the integer part, we

have to add a leading 0 which makes it 0101, 0101, so which is 5 and then for this we

have to add a trailing 0. So, if we add a trailing 0 this will make it as 5, and this is E. So,

this is how we convert a binary number into hexadecimal number for simply representing

it in a compact fashion.

(Refer Slide Time: 22:22)

Now, in a similar way, we can also perform hexadecimal to binary conversion. So, we

can convert a number from hexadecimal to binary, by translating every hexadecimal digit

into 4 binary digit.

(Refer Slide Time: 24:21)

So, how are hexadecimal numbers written? So, like we have to represent a number as

hexadecimal otherwise it will be difficult for the computer to understand. So, to do that

you can either add a suffix H or you can use the prefix 0x. So, this here we are

representing this 2A is a hexadecimal number, where H is added as a suffix. And here

2AB4 is a hexadecimal number --- this is a 16-bit hexadecimal number and it is added

with a prefix 0x. And this is a 32-bit hexadecimal number with all 1s, so it is represented

as FFFFFFFF.

(Refer Slide Time: 25:33)

Now, an n-bit binary number can have 2n distinct combination. For example, if you

consider n = 3, so we will have 23 combination; starting from 0 to 2n-1. So, the first is

000, next is 001, 010, 011 and so on till 7. So, similarly for an 8-bit number, it will be 0

to 28-1 = 255; for 16-bit it is 0 to 216-1 and so on.

(Refer Slide Time: 26:50)

So, so n bit binary integers can be represented like this, and the equivalent unsigned

decimal number is represented by this; it is multiplied by 2 to the power 0. So, each digit

position has a weight that is some power of 2.

(Refer Slide Time: 27:09)

Now, let us come to signed integer representation. So, in signed integer representation,

how do we represent negative numbers, how do we represent both positive and negative

numbers? So, here the question arises how to represent the sign bit. There are three

approaches that are followed; one is sign magnitude representation another is one’s

complement representation and another is two’s complement representation.

(Refer Slide Time: 27:42)

First come to sign-magnitude representation. So, in a sign-magnitude representation for

an n-bit number representation, the most significant bit indicates the sign. So, if the most

significant bit is 0, then we say it is a positive number; if it is 1 it is a negative number,

and the remaining n-1 bits represent the magnitude of that number. So, for an n-bit

number, what will be the range that can be represented, it is –(2n-1-1) to +(2n-1-1).

(Refer Slide Time: 28:39)

So, let us see this for a 4-bit number. So, for a 4-bit number, you can see the range is

starting from -7 to +7. So, let us see how we can represent -7 to +7. So, 0 will be same as

0, and so on till 7. And starting from this is -0 because the first bit represent the sign and

this is the magnitude, and then we have -1, -2, etc.

So, this is how we can represent the set of numbers for n = 4 using sign magnitude

representation. So, these are all the magnitude and this is the sign of the number. Now,

what is the problem here, the problem here is that you see you have two representations

of 0. So, you have -0 and you have +0. So, this is one of the demerit of this method, we

have two different representations for 0.

(Refer Slide Time: 30:31)

Let us move on with another representation that is 1’s complement representation. So,

the basic idea here is positive numbers are represented exactly in sign magnitude form;

and for the negative numbers these are represented in 1’s complement. In 1’s

complement, in each number if a bit is 1 it will be converted to 0; if it is 0 it will be

converted to 1. And the MSB will indicate the sign of the number; for a positive number

it will be 0, for a negative number it will be 1.

(Refer Slide Time: 31:09)

So, this is the representation for n = 4. From 0 to 7, it will be the same as sign magnitude;

and starting from -7 the representation is different. So, let us take the -4. How do you

represent 4? We represent 4 as 0100. So, -4 is represented using 1s complement as 1011.

But here also the same problem exists; we have two representations of 0.

(Refer Slide Time: 32:04)

Here also the range of numbers that can be represented is +(2n-1-1) to –(2n-1-1), but the

problem here is we have two representations of +0 and -0. But there are few advantages;

that is, using 1’s complement subtraction can be done using addition and it leads to

substantial saving in circuitry. So, you will be look into all these things in detail in the

Arithmetic and Logic Unit.

(Refer Slide Time: 33:13)

Let us move on. And let us see 2’s complement representation. Here the positive

numbers are represented exactly the way as sign magnitude form, but the negative

numbers are represented in 2’s complement form. By 2’s complement what we mean?

Firstly, we do 1’s complement and then we add 1 to the resulting number. So, this is the

2’s complement representation. Here also the MSB will indicate the sign of a number; 0

for positive, 1 for negative.

(Refer Slide Time: 33:53)

So, this is the representation for n = 4. Now, we see that from 0 to 7 the representation is

same. The negative number representations are also shown. And the main advantage is

that here there is only single representation of 0. So, what is the range of number that we

can have, one more than the previous one.

(Refer Slide Time: 35:01)

So, the range of numbers that can be represented in 2’s complement is -2n-1 to +(2n-1-1).

We have a unique representation of 0, subtraction can be done using addition, and it

leads to substantial saving in circuitry. Almost all computers today use 2’s complement

representation for storing negative numbers.

(Refer Slide Time: 35:40)

Now, let us also see some more features of 2’s complement, which will be necessary for

the further lecture units. It represents a weighted number representation where MSB

having the weight -2n-1. So, what does it represent, it represent that all these numbers will

have 20, 21, 2n-2, but the last one the magnitude will be -2n-1.

(Refer Slide Time: 36:22)

So, let us see this. So, how we can represent -20 in 2’s complement? This is 20, this is 21,

this is 22, this is 23, 24, and -25. So, for any negative number that we represent using 2’s

complement the most significant bit will have 1.

Now, let us add an extra 1 to it, and let us see that whether this changes or not. So, we

added 1 more in the most significant bit and let us calculate it once more. The value

remains -20. So, even if you add 1 more 1 into it, this will not change, this will be

represented as -27 + 26, and this will remain as -20. So, this is what we call sign extension

in 2’s complement.

Now, what happens if we shift left by k position with 0 padding we are shifting left with

0 padding? What it does it multiplies the number by 2k. So, we can take an example

where this is the number what we say we shift left. So, we are shifting it left. So, this

number is shifted to left by 2. So, we will shift it once and we shift it once more. If you

shift it two times, it will become 01001100 and this is equivalent to +76 --- basically we

have multiplied by 22 that is 4. Similarly, if this is -29, we shift left by 2 and we get -116.

So, shifting left meaning multiplication by 2.

(Refer Slide Time: 39:24)

Now, we will also see shift right by k positions with sign bit padding, what will happen

divides the number by 2k. Let us take an example. So, this example is where we shift

right by 2 positions and then what is happening. So, here you have a number +22, once

we divide by 2 we will get 11. Again we divide by 2 we will get 5. Similarly, -28.

(Refer Slide Time: 40:08)

So, let us take this example of -28 here. So, -28 can be represented as 11100100 in 8-bits.

And then we do an arithmetic right shift. When we do an arithmetic right shift the most

whatever value is a most significant bit that comes here and all other bits are shifted 1111

position see that is what we have done. So, all other bits are shifted to 1111 position and

then this bit comes in the most significant bit and this representation is nothing but -14.

Similarly, we are doing arithmetic shift right once more and same 1 bit comes in this

position. So, 1 is coming here and all other bits are getting shift to 111 position to the

right. So, we get 1111001, this is equivalent to -7. So, this is how we perform shift right

by k position with sign bit and which actually divides the number by 2k.

Now, this sign bit can be copied as many times as required I have already shown you this

in the beginning to extend the size of the number called, this is called sign extension. So,

this is the 8-bit number which is +47; sign extension to 32-bit you add as many number

as 0 as required it will still remain +47. Similarly, a negative number -93, we can add as

many 1 in the beginning to extend it to 32-bit the number will remain as -93 only. So, we

can see that in 2’s complement how we can represent it and how we can do sign

extension.

So, we come to the end of lecture 6, where we briefly talked about number systems such

that it will be easy for you to get into how instructions are represented and get executed

in next lectures.

Thank you.

