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Multicycle Operations in MIPS32

In our earlier discussions on the MIPS32 pipeline, we basically concentrated on integer

instructions. We had seen how the pipeline works, we had seen the effects of the hazards,

the  interrupts  and  various  ways  to  handle  these  problems  and  to  improve  the

performance. But now let us come to the real scenario. In a real computer, we do not

only have integer operations or instructions, we need also to process scientific data that

are in the form of floating point numbers. So, we need floating point arithmetic. Floating

point processing are done in the computer system itself now. So far we have assumed our

EX stage will  be able to finish computation in a single cycle,  but that is a little  too

optimistic realistically speaking. Can you finish a multiplication or a division operation

in one cycle?

Well yes, provided you make the clock sufficiently slow, but that is not a good idea. If

you do that  everything else will  also become slow,, moreover  we have seen that for

floating  point  operations,  you  need  multiple  cycles  to  carry  out  the  floating  point

operation  itself  which  means  essentially  your  EX cycle  itself  may required  multiple

clocks. So, we are talking about something called multi cycle operations. The topic of

our lecture today is multicycle operation in MIPS32.



(Refer Slide Time: 02:24)

As I said, real implementation of MIPS32, where you can run all kind of applications,

will  contain  both integer  and floating-point  units.  Floating-point  operations  are  more

complex than integer operations; not only that, even within integer operations multiply

and divide can be more complex than add and subtract.

These kind of operations are slower in general and may require more than one cycle to

finish during the EX stage. This obviously makes the pipeline scheduling and controlling

much  more  complex  and we shall  see  more  interesting  kinds  of  hazards  can  appear

because of this. Earlier what we assumed was that that all instructions are of the same

size, they take same time. But now when we say instructions can vary in time in terms of

execution we are landing ourselves into a big trouble. May be the earlier instruction will

be finishing later, next instruction will be finishing earlier;  lots of such problems can

occur.



(Refer Slide Time: 03:55)

The first and very naive solution is not to make any change in the control, just slow

down the clock. Your operation may be more time consuming, but you give sufficient

time within a clock period to complete it. So, may be earlier your clock was like this, this

was your clock signal.

(Refer Slide Time: 04:22)

But now you make the clock like this. Obviously, this is not a good idea because making

clock period slow means your all your stages, not only EX; IF, ID, EX, MEM, WB, they

will all be running at this speed T. So, if you slow down the clock everything will slow



down. This will cause a severe degradation in performance and; obviously, we cannot

use it in practice.

(Refer Slide Time: 05:11)

So, what is the more practical solution? We do not change or modify IF, ID, MEM, WB

because they do not change, they remain as it is. The only concern is the EX stage, where

the  arithmetic  operations  are  carried  out,  which  here  we  are  saying  can  vary  in

complexity. Some are integer, some are floating point, even within integer, they can be of

various complexities. Let us assume integer and floating point for the time being, we

allow floating point arithmetic pipeline to have a longer latency. Logically speaking what

we are saying is that in the instruction execution cycle, the EX cycle is repeated for more

than one clock cycles.

So, we are repeating the EX cycle  several times.  How many times we are repeating

depends on the complexity of the operation. In a real computing platform, the EX stage

will actual be having multiple functional units; not just one. May be there will be one

functional unit that will be handling additional subtraction, there will be one functional

unit for multiplication, one functional unit for division. Now there can be stalls due to

structural  hazards,  also  there  is  a  possibility  of  a  stall  if  you  are  trying  to  issue  an

instruction (means your instruction moves from ID to EX), it may so happen that the

earlier instruction which was there in the pipeline was using the same functional unit and

it was still somewhere in EX.



So, the next instruction cannot enter EX, unless the EX or the arithmetic circuitry is itself

pipelined. You recall, we discussed pipeline implementation of some of the floating point

operations, this is why we need that. If they are not pipelined,  then while a previous

instruction is doing multiplication the next instruction has to wait for the multiplication

till the earlier one completes. But if the multiply operation itself is pipelined, when the

first instruction is in the second stage of multiplication, the next instruction can enter the

first stage. So, they can proceed in overlapped fashion.

(Refer Slide Time: 08:38)

So,  if  you  have  pipelining  in  the  functional  unit,  you  can  avoid  structural  hazard.

Otherwise, there will be a structural hazard in the EX stage. This is a logical picture

where we are assuming that the EX stage has logically 4 functional units. The first one is

or conventional integer unit which we have seen earlier. For that the sequence will be IF,

ID, EX, MEM, WB. The main integer unit will be handling all load and store operations

from memory, integer ALU operations and also branches. There is a floating point adder,

subtractor, another functional unit, this blue arrow indicates that you may have to iterate

it several times. This is a multicycle EX stage. There can be a floating point multiplier

and also integer multiplier. And this is a division (floating point or integer) unit.

As you can see, other than the integer EX unit, other EX units are multicycle, they will

need multiple cycles of EX.



(Refer Slide Time: 10:01)

Earlier  we  briefly  looked  at  the  MIPS32  floating  point  registers  and  some  of  the

instructions there n. In the MIPS32, there are 32 floating point registers which are named

F0 to F31, they are all of 32 bit size. When we work with double precision numbers, that

means 64 bits, then we can take register pairs; like F0 and F1, you can take together F2

and F3 and so on, similarly F 30 and F 31. Like this, you can use register pairs for double

precision operations. 

(Refer Slide Time: 11:06)

Some floating-point instruction examples are shown in this slide.



 (Refer Slide Time: 12:26)

We talk  about  latency and initiation  intervals  in  this  kind  of  multicycle  pipelines.  I

mentioned that arithmetic units are often pipelined wherever possible because unless you

do a pipeline, you cannot overlap the operations. I am giving a small example. Suppose

there is one MUL instructions followed by another MUL instruction.

(Refer Slide Time: 13:06)

The way the MUL instructions can proceed in overlapped fashion in the EX stage is

shown.



Now latency means we are talking about the data dependencies; there is one instruction

that  is  producing  a  result  and  another  instruction  which  is  using  it.  So,  how many

minimum number of clock cycles will be required between them? We saw earlier that a

load instruction  followed by its  use in  the integer  case requires  1 stall  cycle,  which

means latency is 1. But for floating point operations latency can be more.

And initiation interval means how frequently we can issue instructions of the same type.

If  it  is  fully  pipelined,  we can  issue it  every cycle,  like  in  the  previous  example  of

multiplication I  have shown. These are the typical  values that we will  assume; these

values are very realistic.

(Refer Slide Time: 15:22)
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So, our architecture looks like this. These are the pipeline stages, IF ID MEM and WB,

here these are the EX stages. The integer unit has a single EX, for floating point addition

there are 4 stages, for floating point multiplication there are 7 stages, and division is a

single stage, but with delay of 25. It is a non pipelined, this is how typically you see

division. The reasons is the cost of pipelining a divider is much more, but otherwise the

frequency  of  division  is  much  less  as  compared  to  other  operation  like  addition,

subtraction, multiplication.
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There are some RISC architectures  where division is not pipelined.  Some interesting

scenarios you can see here; I have shown one multiply followed by add; these are all

double load and store. MUL will need 7 cycles in the execution stage M1 to M7; ADD

will require 4 cycles. Now you see out of order completion of instructions. The third

instruction finishes first, fourth instruction finishes next, then the second instruction, then

the first instruction. There will be out of order completion of instructions; then second

instruction illustrates some read after write hazards. The required stall cycles are also

shown.

We can see that  there are  so many stalls  because of  RAW hazards  in  floating  point

operations. The number of stall cycles is significantly higher for multicycle operations.

So, the compiler needs to take care of these kind of things; some of these techniques will

be discussed.

(Refer Slide Time: 21:53)

Now another interesting example is here. This results in a write-after-write hazard that

was never  possible  in an integer  pipeline.  See there are  3 instructions.  They are the

independent  instructions,  but  the  point  is  that  they  are  writing  into  some  registers.

Multiply will require 7 EX stages, subtract will require 4 EX stages, load will require 1,

but interestingly we see that all reach the WB stages together. So, there can be structural

hazard in the WB stage, first one is trying to write into F4, this one is trying to write into

F6,  this  is  also trying  to  write  into F6. So,  there  is  a  conflict  here that  needs  to be



handled; these instructions should not be allowed to reach WB stage at the same time.

Some stall cycles in WB also needs to be inserted here, but for MEM in this example,

there is no conflict because only load is accessing memory.

The conflict in WB is important here; you need to insert stalls. With this, we come to the

end of  this  lecture,  where we tried  to  appraise you about  the  problems that  arise  in

muticycle operations; what are the kind of issues and hazards that can show up and of

course, in a real machine there has to be a very sophisticated mechanism to handle all

these kind of problems.

Thank you.


