
Computer Architecture and Organization
Prof. Indranil Sengupta

Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur

Lecture – 58
Pipeline Hazards (Part 4)

We continue  with  the  discussion  on  control  hazards.  If  you  recall  what  we  were

discussing in the last lecture, we looked at various schemes with which we can reduce

the  branch  penalty.  We were  making  some  static  predictions,  assuming  beforehand

branches taken or not taken, or we were relying on the compiler to move codes around

and give the pipeline a better code to execute, which we will generate less number of

stalls. But both these approaches are static in some respect, which means whatever we

are deciding or predicting or assuming that is statically done once.

Now, we look at some approaches where we try to exploit the dynamic behavior of the

loop of  a  branch instruction  to  improve  or  enhance  the performance  with respect  to

control hazards even more. 
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In our earlier lectures we have seen that in order to reduce the branch penalties, we were

using some kind of static approach. Either you are doing some prediction,  or we are

relaying  on the  compiler  to  try  and fill  up  the  branch delay slots  with  some useful



instructions.  We shall  now discuss purely hardware based approaches to  dynamically

predict the outcome of a branch.

The prediction can change with time. Like you see in a program whenever there is a

branch depending on the program some of the branches can be taken most of the time,

some  other  branches  can  be  not  taken  most  of  the  time.  So,  you  really  cannot  say

statically beforehand that all branches are mostly taken or mostly not taken.
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Depending on your program, a branch can be either mostly taken or mostly not taken, or

it can be 50-50. The first approach we talk about uses a hardware data structure called a

Branch Prediction Buffer.

BPB is a small high-speed memory, and this is the address of the branch that is shown in

pink.  Now you  recall  in  MIPS32,  every  instruction  starts  with  an  address  that  is  a

multiple of 4. 
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Thus whenever you have a 32-bit address the last 2 bits will always be 0; this means

multiple of 4, then you have remaining 30 bits. Here you are selecting a few bits from the

lower side, say k number of bits. Value of k is a design parameter, this can be 4 5 6

whatever, let us say 6 bits.

Our approach will be something like this. These k bits of the branch address are used to

access this table BPB. BPB is a small high-speed memory that is indexed by the lower

few bits of the instruction. If k = 6, 26 = 64. I will be having a small memory with 64

entries. These few bits will be used as the address to access this memory. So, BPB is

indexed by these k bits, and what is stored in this memory? Here the predicted branch

address is stored. The predicted branch address can be either the address of the next

instruction or the address of the target.

When this instruction is executed if it is not taken branch, next instruction executed will

be the next one. If it is a taken branch next instruction executed will be the one from the

label L. So, this is one possible branch address, this is the other possible branch address.

The predicted branch address is stored here. The idea is that you check the last few k

bits, you look up this table and see what is stored here. And whatever you stored here

that is your predicted branch address from where you start fetching the next instruction.

And this green one you have some additional bits stored. In the 1-bit prediction scheme



we have single bit with every entry, this will tell whether the last prediction was a taken

branch or a not taken branch. Let us say 0 means taken and 1 means not taken. 
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In this 1-bit prediction scheme you see just one thing. Whenever you encounter a branch

instruction you check these k bits, go to the index and also check the prediction because

you will also come to know later whether the branch is actually taken or not taken. You

can compare with the prediction whether this is matching. If it  is matching then you

know you are correct. 

But there are some problems. This 1-bit prediction scheme means the prediction may be

incorrect because the value your getting from the BPB may correspond to some other

branch instruction that has the same lower order k address bits. 

There can be some other  branch address for which accidentally these k bits  may be

identical. So, they will both point to the same location. You will be trying to get the same

entry here in the BPB and say that this will be your target branch address; obviously,

maybe this entry was for this one. Now by mistake for the other one also you map here.

So, that will be a wrong prediction. This sometimes a prediction may be incorrect and

here the instruction fetching will begin from the predicted address, and during execution

later on well for MIPS32 as I said at the end of ID you will come to know whether your

prediction is right or wrong.



At the end of ID you will be knowing whatever you have taken from BPB was a right

prediction  or  a  wrong prediction.  If  you  see  that  your  prediction  is  wrong,  you  can

appropriately change the prediction bit in the BPB, and instruction fetching will begin

from the predicted  address.  Now the drawback here is  that  suppose I  have a branch

instruction that is taken most of the time. When it is not taken there will be 2 incorrect

predictions rather than 1, why? Let us look at a scenario. Suppose I have a loop that is

executing 100 times. So, for 99 of the time it will be taken branch, but for the last time it

will be coming out of the loop, that will be a wrong prediction.

So,  out  of  this  100  the  last  time  we  will  be  getting  one  wrong  prediction.  So,  the

prediction bit will be the appropriately inverted. So, in BPB that entry was showing as

taken next time when you again go back and enter that loop, maybe this is a nested loop.

Next time when you enter that loop again the first iteration of that loop we will there will

again be a miss prediction, because last time you had set the prediction bit to not taken

because it has come out of the loop, but next time when you enter the first time there will

be a loop again.  So,  there will  be a  wrong in prediction.  So, there will  be 2 wrong

predictions for every execution of the loop.
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Let us take an example. Here I have a nested loop. The inner loop executes 20 times and

this is inside an outer loop. I am looking at the inner loop, which is executing 20 times.

We are saying that for this inner loop there will be 2 mispredictions, last iteration of the



current loop. So, when i = 19 last time it will be coming out of the loop, but for i equal to

0 to 18, it will be taken, but for i = 19 it will be not taken. But when it comes back and

enters the loop again for the next loop of the outer loop, again it will start with i = 0 and

last time it was a not taken prediction.

So, with not taken for i = 0 it will try to take the branch. It will be a misprediction again.

So, actually though this branch is taken 95% of the time in reality, 19 times it is taken 1

time it is not taken, but this one bit prediction scheme provides correct prediction 18

times and twice it is mispredicting so, it is having 90% accuracy.

(Refer Slide Time: 13:19)

This is one drawback of this 1-bit prediction scheme. To avoid it you can have a 2-bit

prediction scheme because the trouble with the earlier scheme was that every time there

was a misprediction, I was flipping that bit in the branch prediction buffer BPB.
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Here we were flipping this bit as soon as there is a misprediction, we are not taking this

fact into account just like the earlier example showed, that most of the practical scenarios

will  be  like  this  and  if  you  follow  this  immediate  flipping  policy  there  will  be  2

mispredictions in every loop. Our modified strategy will go like this. We are saying that,

we will not change the prediction every time there is a misprediction we will be waiting

2 times.  If there are 2 consecutive mispredictions then only we will  be changing the

prediction information. If we do it then if you think of the earlier case then 19 of the

times we can have correct prediction. Here we try to avoid the 2 mispredictions for loop

in the example that I have shown for the 1-bit prediction scheme, let us see here in the 2

bits scheme. I am showing a state transition diagram.

Four states are shown, the green states are the stable states, 0 0 indicates predict not

taken, 1 1 indicates predict taken. While you are here if your loop you are seeing taken

you remain here, and while you are here if it is not taken you remain here. But if it is

predict taken, if you get a not taken misprediction, you do not straight away go here, but

rather you come to an intermediate state, this is still predict taken, but maybe. So, here if

you see that next time again there is a misprediction then only you move here. Which

means that your behavior of the loop has possibly changed earlier it was mostly taken,

now somehow it has become mostly not taken.



But if you see that the next time it is again taken we again come back here. Similar is the

case here if it is not taken and if you find it is a taken a misprediction you temporarily

come here; this is again predict not taken, but not green may be case. If it is again a

taken; that means 2 consecutive mispredictions then you permanently move here and if it

is again a not taken you again come back here. Since each state is encoded in 2 bits we

call it a 2-bit prediction scheme. Here the prediction is changing only after 2 consecutive

mispredictions.  In  general  this  will  give  better  behavior  as  compared  to  the  1-bit

prediction scheme.
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Now, the thing is that for a MIPS32 pipeline,  really you do not gain much with this

because in MIPS32 pipeline because of the simplicity of the instruction encoding, we

will come to know everything at the end of ID anyway. We will know whether the branch

will be taken or not taken, we will also know the address of the target at the end of ID

itself.

So, whether we are using 1-bit prediction or 2-bit prediction really does not help much

for MIPS32 because we have to wait till the end of ID to come to know that whether our

prediction was correct or not. For MIPS32 pipeline we need to do something more.
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If you look at the pipeline stages again, it was IF, ID, EX, MEM and WB. Suppose this is

a branch instruction, what I am saying is that it is only at the end of ID you come to

know about the branch outcome precisely. So, all your decision will be here, but because

you will be fetching the next instruction immediately here, but branch outcome is known

later, maybe this fetching will be wrong. 

What we are trying to do here is that: can we do something in the IF stage itself so that

fetching can start in the immediately next cycle with some predictive accuracy? Because

this is the branch instruction we cannot know until ID is over anyway, but here we are

saying that we do not know this is the branch. You see there are 2 things. Firstly, I am

saying that the instruction unless you decode it during the ID stage, you will not know

that it is a branch instruction; and if you do not know it is a branch instruction, then all

this things become meaningless -- it can mean add instruction also, but what you can do

better is you apply a little intelligence. Suppose I maintain the memory address of the

instructions I know that are branch.

So, whenever I am fetching an instruction I am comparing the value of the PC from

where I am fetching (say 1000) with the address of a known branch instruction that I had

seen earlier. There will be another table. I compare, if I see that 1000 is there, I will know

that this is a branch instruction. So, I can start my manipulation during IF itself. I will not

have to wait till ID. This is the philosophy we will be following now. 



This last statement actually talks about to improve the MIPS32 performance we need to

know from what address to fetch by the end of IF; whether the instruction is a branch and

what is the predicted next PC. We want so many things earlier before the instruction is

decoded.

(Refer Slide Time: 21:42)

We use something called branch target buffer. BTB is a high-speed memory, which stores

the predicted address for the next instruction after branch. Whenever there is a branch

instruction from where you will be fetching the next instruction; is it the next instruction

following or is it the target instruction that will be your predicted next instruction that

will  be stored there.  Since we are predicting the next instruction from where we are

fetching before the decoding, we will  also have to know whether fetch instruction is

predicted as a taken branch or not. 

Just as I said the PC value from where you are fetching the instruction that needs to be

stored in that memory. Because that will tell me whether that is a known address of a

branch instruction.
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First you see this is how the table looks like. There are actually three parts; the first part

is  the address of the branch instruction this  is  the PC value,  then the predicted next

address. While you are fetching an instruction, this is actual an associative memory we

will  have to search this  parallely. When an instruction is being fetched you parallely

check whether this PC value is already present here or not. If we see that it is already

present, it means that the instruction is a branch instruction.

And if it is a branch instruction, then the corresponding predicted PC value, that you will

be using as your next PC from where to fetch the instruction. But if you see that it is not

matching, then it is not predicted as a branch, you proceed normally. And also there is a

third field, taken or not taken. You also keep this so that if there is a prediction mismatch,

you can update this. So, the PC of the instruction being fetched is matched against the set

of instruction addresses stored in the table.
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So, this is the data structure and this is how you are comparing. How you will be using it

now let us see. This is the flowchart, which tells you what happens during the IF stage,

what happens during ID, what happens during EX. Now in the during the IF stage as you

can see your sending the PC to memory for fetching the instruction, parallely you are

also sending it  to BTB for searching.  While  it  is  being fetched,  you parallely check

whether  it  is  in  the BTB or not.  Suppose you  find yes,  which means  it  is  a  branch

instruction; you send out the predicted PC. At the end of the ID the instruction that has

been fetched we will also have completed the decoding process. So, then you also know

whether your prediction and the decoding of the instruction is matching or not. If you see

that the predictions match you continue execution without any stalls.

But if you see that prediction is wrong because your table says that it is taken, but after

decoding you see that it is not taken; that means, it is a mispredicted branch. Then you

will have to kill the instruction you have fetched. You need a stall here, and you will

have to restart fetch at the other target, and once you do this you will also have to update

BTB because now your prediction has changed.

So, you will have to modify this T and NT, and also update the predicted PC, and here if

it is not in the BTB it can mean 2 things, that it is either not a branch instruction or it is a

branch instruction,  but you are seeing it  for the first time. So, whether or not it is a

branch instruction, that again you will come to know during ID. If you see that it is a



branch instruction then you will have to enter this information into BTB. Because you

are seeing the branch instruction for the first time,  but if it  is not it  is a non-branch

instruction you proceed normally to the execution.
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This table shows the various penalties, you see if an entries found in the BTB and the

prediction is correct prediction as true and the actual branch was true then this no penalty

or it is not taken and not taken then also there is no penalty.

These are the assumed values and there is also justification. 
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There is a small example were you can work out based on these values.

There is a BTB, and 90% of the branches are actually found in BTB, and out of that 8%

of the predictions are incorrect and the remaining 92% have correct. And 75% of the

branches are actually taken. So, what will be the branch penalty? 

The calculation of the branch penalty is shown, which is a weighted sum of the various

possibilities.
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And lastly  you  will  look at  some conditional  instructions  that  also  help  in  reducing

branch penalties. In fact, MIPS has a number of such conditional instructions. So, what

are condition instructions? There is something like conditional move, let us look at a

justification why we need this. Consider a C code like this, this a conditional move.

So, with this we come to the end of this lecture. Over the last few lectures we discussed

the various hazard scenarios in the MIPS pipeline and looked at many of the techniques

that  are used to detect  and mitigate  the effects  of hazards.  You shall  see some other

advanced issues later in some lectures, but for this lecture I think we are done and we can

stop here.

Thank you.


