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Pipeline Hazards (Part 3)

In the last lecture we were looking into control hazards and associated problems. We had

seen that for MIPS32 pipeline implementation, we can reduce the branch penalty to 1

cycle.  Because we mentioned that  at  the end of the ID stage we can know both the

outcome of a branch whether it is taken or not taken, and also the branch target address.

So, in the worst case we have to incur a penalty of 1 cycle. You should say that 1 cycle is

fine  for  load  followed  by  use,  we  have  1  cycle  here  also.  Let  us  make  a  simple

calculation.
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We saw in the example we took in the last lecture that the ideal CPI was 1, 30% of

branch, but here we are saying that branch penalty is 1 cycle. So, what will be the actual

CPI? In 70% of the case when there is no branch CPI will be 1, and for 30% of the cases

there will be 1 cycle penalty. So, CPI will be 1.30. So, you see still you have a 30%

degradation that is still quite substantial. 



Let us see how we can reduce this further. This is the topic of our discussion in this

lecture. Our specific target here will be to reduce the pipeline branch penalties.
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We start by discussing four broad techniques. First is a very naive approach; we have

seen that a branch will incur 1 cycle penalty. So, whenever there is a branch you freeze

the pipeline, insert one stall cycle; this is the simplest approach. The main advantage is

simplicity, but as I have shown in the example the overhead can be significantly high.

The other approaches are based on some kind of prediction. The second approach says

we predict that the branch is not taken, and you allow the hardware to continue as if the

branch is not executed at all. That means, the next instruction is fetched, it is executed

and we continue as if nothing has happened, until the branch outcome is actually known

to us. When the branch outcome is actually known to us, then we can know whether our

prediction was right or wrong. If we see that our prediction was right, we do not do

anything.  The next  instruction  that  already entered  into  the  pipe,  which  was already

executing, let it continue to execute --- we do not incur any stall cycle for that. But only

if we find that our decision was wrong, it was actually a taken branch we are assuming

not taken, we have to stop that, insert a stall,  and fetch the new instruction from the

target.
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Let us take an example. If it is a not taken branch then there is no penalty; that means, it

is  a  branch  instruction,  but  the  branch  is  not  taken.  So,  the  sequentially  following

instruction will be executing after that. The hardware will be assuming that the branch is

not taken, and it will fetch the consecutive instruction without any stall. For such cases

there will be no penalty, but if the branch is actually taken, then at the end of the ID stage

you will come to know that your prediction was wrong, because it is here you come to

know that your branch is taken or not taken by decoding the registers. If it is wrong then

you will be incurring a 1-cycle  penalty. Here for some of the cases there will be no

penalty, for some cases there will be one cycle penalty. 

The third approach is we predict that the branch is taken, just the reverse. We assume that

the  branch  is  always  taken.  But  unfortunately  for  MIPS32  you  will  see  that  this

prediction does not help because if we predict that the branch is taken; that means, you

will  always  be  fetching  the  next  instruction  from the  target  address,  and  the  target

address is known only at the end of ID. So, only after ID you can start the fetch. So,

anyway this 1 cycle will get lost. Irrespective of whether it is taken or not taken branch

for MIPS32, this 1 cycle penalty will always be there.

As I had said for MIPS32 we know the branch outcome and the target address both

together. So, there is no advantage in this approach because in both cases there is 1 cycle

penalty; for more complex instruction machines may be this will help.
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In such complex instructions, possibly the branch address is known earlier, but whether it

is a taken or non taken branch is known much later in the instruction execution cycle. For

those kind of instructions this strategy will work better, but not for MIPS. 

The  last  approach  is  called  delayed  branch.  It  says  it  says  that  there  is  a  branch

instruction, let that branch execute -- it can be a taken branch or not taken branch. The

assumption  is  that  the slots  that  are  following that  branch instruction  where you  are

normally inserting stall cycles, for MIPS there was 1 stall cycle. We call it as a branch

delay slot. What we are saying that the instruction that is there in the delay slot, i.e. the

instruction we fetch after the branch, will always be executed and the compiler knows

that irrespective of the branch is taken or not taken. So, the compiler will try to put some

instruction in the delay slot, which is supposed to be executed every time the branch is

executed, irrespective of it is a taken or non taken.

This is  called delayed branch. Here we are making the hardware simple,  but we are

putting all the responsibility on the compiler. In general a branch instruction can have n

stall penalties, but for MIPS it is only one. In general I am showing n, after this n penalty

the next target address will be known. The next instruction can be fetched after that.

These  n  successor  instructions  are  called  branch  delay  slots;  for  MIPS  it  is  1.  The

compiler will try to move instructions around and try to fill them up, , these instructions

are always executed irrespective of the outcome of the branch, whether you take it or do

not take it.
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Let us take some examples. Suppose I have an ADD instruction followed by a BEQZ,

and there is a delay slot after that. You see the ADD instruction is executed before branch

always. There is no harm if you move this ADD to the delay slot because whenever there

is a branch, the delay slot will also be executed. So, we are not wasting the delay slot,

rather we are moving a useful instruction. Whenever the branch is taken or not taken,

ADD will always be executed. 

The  other  example  is  a  little  complex,  and  is  illustrated  here.  Similarly,  the  third

example.
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For delayed branches there are some other difficulties, like you will be having multiple

PCs, in fact, it will be n + 1. This means other than the target address, all the instruction

in the delay slot also need to be saved if there is interrupt in between. So, there are

multiple values of the PC that need to be saved, because the PC of the branch target and

the PC of the delay slots are not sequential.
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Let us take an example. Consider pipeline with a ideally CPI of 1, let us say 20% of the

instructions are branch and out of them 70% are taken, and the remaining 25% are not

taken.

Using the  four  strategies  we discussed let  us  evaluate  the speedup.  Speedup will  be

calculating using this formula, this ideal CPI multiplied by pipeline depth divide by ideal

CPI plus stall cycles per instruction. 
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 Calculations  for  the four cases,  namely,  (a)  stall  pipeline,  (b) predict  not  taken,  (c)

predict taken, and (d) delayed branch are shown.

For the last strategy I am assuming that there is 50% probability that the compiler will be

able to fill up the delay slot. So, I am multiplying this by 0.5. 

Now interrupts pose a more difficult problem in a pipeline. Let us see in the MIPS 5-

stage integer pipeline whenever interrupt comes what are the issues.
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Interrupts can complicate the design of the pipeline. Overlapping of instruction execution

makes it difficult to decide whether an instruction can modify something, when I say

safely change the state it means either change the value of some register or something.

Suppose an instruction changes the value of a register, later it is found that there is an

interrupt that instruction has to be withdrawn, but already it has modified the register. 

So, the instruction should not change the state of the machine before it is known that the

interrupt  has  occurred  or  not.  Some  interrupts  can  force  the  machine  to  stop  the

instruction before it is completed, like page fault. Whenever you are trying to fetch an

instruction that is not there in memory, it has to be fetch from disk; this is the example of

a page fault. Under those cases the instruction has to be restarted. After the requested

memory word is brought into memory, we will again execute that instruction. So, such

interrupts are more difficult. The most difficult interrupts have the properties that they

occur in between an instruction and they have to be restarted.
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One strategy for interrupt handling can be like this. Whenever an interrupt occurs it can

occur in any stage, in IF ID EX, etc. A special TRAP instruction or some kind of a flag is

forced into the pipeline at the next instruction fetch cycle, which will indicate that an

interrupt  has  occurred.  The  control  unit  will  know  that  this  TRAP instruction  was

inserted,  and  will  not  allow  any  writes  to  occur.  Not  only  for  the  instruction  that

generates the exception at the interrupt, but for all the instruction which follow it and this

will continue until the TRAP reaches the WB stage.



Therefore delayed branches it is a difficult condition, where the instruction in the branch

delay slot may have cause the interrupt. There was an instruction that is presence in the

delay slot,
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that can cause the interrupt. So, if the branch is taken, and there was a branch delay slot.

There  are  some  instructions  here,  say  xyz,  which  has  generated  at  interrupt.  In  the

pipeline this branch instruction was already there. It was fetched, it was decoded, it was

executed, it was supposed to do MEM and WB, and the next instruction is supposed to

also execute along with it. So, xyz should also be fetched here, decoded here, executed

here, and so on. What I am saying is that suppose this instruction during the EX stage

generates an interrupt. We will have to stop everything not only this, but also this branch

instruction. And when you come back you will have to not only restart this xyz, but also

the instruction that is here.

So, multiple PC values have to be saved; the PC of this xyz, and also the PC of this. This

is  what  is  mentioned  here.  The  instructions  restarted  are  those  in  this  slot  plus  the

instruction at the branch target that requires a number of PC values to be saved and of

course, restored. When the interrupt is handled after that there is a special instruction in

MIPS32 called return from exception RFE, that will be reloading the PCs automatically

and  restart  the  interrupted  instructions.  So,  for  this  kind  of  delayed  branch  kind  of

machines the RFE instruction has to do a lot of things. It will have to reload multiple

PCs. 



Let us define precise interrupts. Let us say an interrupt is occurred. If it is possible for the

control  unit  to  stop  the  pipeline  such that  all  instructions  before  the  instruction  that

generated the interrupt can complete, and all instructions that follow will wait they will

be restarted later, then we say it is a precise interrupt.
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If you see the definition, if the pipeline can be stopped such that the instruction before

the faulting instruction are completed,  while those after can be restarted from scratch

then we say it  is a precise interrupt.  Well  there are cases like page faults where this

precise interrupt is a necessity.
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The  designers  of  the  pipeline  spent  some  effort  to  ensure  that  interrupt  handling  is

precise. So, what are the kinds of interrupts that can be generated in the five stages? They

are shown in the table.
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Take this example. For ID you can get illegal opcode, for EX you can get its a divide by

0 some arithmetic exception, MEM can generate page fault, misaligned access memory,

protection violation, and WB there is nothing. Multiple interrupts may occur in the same

cycle. Let us say a load instruction followed by add is here. The load instruction can

generate a page fault during MEM, while this add can generate an arithmetic exception

during EX. So, two interrupts are being generated in the same clock cycle.

One solution is that if this kind of a thing happens, you ignore the second instruction

interrupt and only handle the first one and again restart. If the second instruction (add)

generated an interrupt, it will generate it again. We deal only with the page fault and

restart the execution; the second interrupt will occur again and will be handled at that

time.
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This is one solution you can think of. The second difficulty is that interrupts may appear

out of order. Let us take another example. The first load instruction may be having a page

fault here in MEM, and this add instruction can have page fault in IF. So, it is out of

order. That means, the earlier instruction is generating interrupt later, later instruction is

generating interrupt earlier. A possible solution to this we will be just discussing briefly.

The solution is the hardware will post each interrupt in a status vector.

(Refer Slide Time: 25:08)



(Refer Slide Time: 25:23)

When the instructions move from one stage to the next, there is also a special  status

register that is part of the inter-stage latches, this will also move from one stage to the

next.

This status vector is carried along with instruction as it moves through the pipe, and in

the status vector you set a bit indicating that there is an interrupt, and also the type of the

interrupt. You do not do anything here, you let it move and when it reaches WB only then

you process the interrupt. If you allow it to move till WB when it reaches here, you see

that what is the type of the interrupt then you handle that interrupt.

So, when the instruction reaches WB, the interrupt status vector is checked and handled,

but if you do it like this then preciseness of the interrupt is guaranteed because the first

instruction will be reaching WB earlier, the following instruction will be reaching WB

later. So, the first one to reach will be the earlier instruction. Maybe the interrupts are

generated out of order, but the first instruction will always reach WB earlier than the next

instruction. So, the interrupt for the first instruction will reach WB earlier this is the idea.

So, this is what we mentioned here that interrupt handling will be carried out in precise

order and with this we come to the end of this lecture.

In the next lecture we shall be discussing some more methods to improve the control

hazard handling.

Thank you.


