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Lecture – 56
Pipeline Hazards (Part 2)

In the last lecture we started our discussion on hazards in a pipeline. If you recall we

talked about three kinds of hazards: structural hazard, data hazard and control hazard. We

were discussing about the data hazards, and the examples that we took were for a case

where  there  were  data  dependencies  between  ALU  instructions.  One  of  the  ALU

instructions was generating a result in a register, while the subsequent instructions were

using the register value as inputs. We saw there was a problem that requires stalls, but we

also came up with the solution. We proposed two things, first was some kind of a data

forwarding hardware. The earlier instruction can compute the result in the EX stage, so

that data value can be taken directly from the output of the EX stage, and through some

multiplexers can be forwarded to the input of the following instructions. And the second

thing that we talked about was that we are permitting something called split access to the

register bank. The clock cycle is divided into two halves, during the first half we are

allowing writes to happen; in the second half we are allowing reads to happen.
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We continue with the discussion here. In this lecture we shall again we talking about data

hazard to start with.

(Refer Slide Time: 02:18)

But  now  we  will  be  considering  the  situation  when  the  hazard  is  occurring  while

accessing memory.
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Let us say this ADD was generating a result in register R1, and possibly a subsequent

instruction was using the value of R1. Here there was a data dependency, now what we



are  saying  that  these  kind  of  data  dependencies  can  also  happen  because  of  load

instruction. 

LOAD  instruction  means  from  the  memory  you  are  loading  some  value  into  some

register, and then some subsequent instruction is using this  register. This is what we

mean by data hazard during memory access.

There are two situations we shall be looking at.  The first situation is that,  there is a

STORE  instruction  followed  by  a  LOAD  instruction.  Here  the  hazard  or  the  data

dependency is with respect to the memory location. The first instruction is writing some

value, the content of register R2 into a memory location whose address is R5 + 100,

while the second instruction is trying to load that same value from that same memory

location, and load into some other register R10.

If you look at the MIPS32 pipeline structure you will see that all memory accesses can

be either load or store. They take place only during the MEM stage; memory accesses do

not take place or occur during the other stages in the pipeline. The previous instruction

will reach the MEM stage earlier, the next instruction will reach the MEM stage one

cycle later. So, that dependency is automatically maintained.

In this example the first instruction was using MEM. This store will occur here, load will

occur here. So there is no conflict, however, one thing is missing of course, here if there

is  caches  miss  this  thing  we  are  ignoring  here.  If  there  is  a  cache  miss,  the  store

instruction can take longer, then possibly this kind of hazard may occur, but again this

cache  miss  is  a  relatively  infrequent  event.  So,  we  always  try  to  design  a  memory

hierarchy that can give you a hit ratio, which will about 98-99%.

The occurrence of cache misses is very rare.  We ignore that occurrence for the time

being. As I said the data are accessed in order. 
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Let us look at another situation where there is a LOAD instruction in the beginning. The

load instruction is loading the value of a memory location R5 + 100 into a register R4,

and the subsequent instructions are using R4. So, this is a load instruction followed by

the use of the loaded data. Here you can observe one thing; the load instruction will be

getting the data from the memory only at the end of the MEM stage.

But the next instruction SUB is requiring this R4, and the subtraction is supposed to take

place during the EX stage. So, the value of R4 is required at the beginning of the EX

only. This is not possible because the memory value loaded here it will be available only

at the and, while the second instruction is trying to use that same value at the beginning

of the EX.

This is a scenario where you have a data hazard that is unavoidable. If you implement

forwarding hardware you cannot forward it, because you are trying to go back in time.

The  first  instruction  is  loading  the  result  only  at  the  end  of  cycle  4,  and  the  next

instruction is requiring that value at the beginning of cycle 4. So, as I said the loaded data

will be available here at the end of cycle 4, while the ALU for the second instruction

wants to use the loaded data at the beginning of cycle 4. Data forwarding will not be able

to solve this problem. You recall when there was a dependency between ALU instruction,

it  was  possible  to  solve  this  problem  using  data  forwarding  because  for  the  ALU

instructions the result is computed in the EX stage only, not in the MEM stage.



But here we are talking about one time step ahead, only at the end of the MEM stage will

our data  be made available  to us.  This is  one scenario where this  stall  cycle  will  be

unavoidable,  but  for  the  following instructions  you  can  use  forwarding,  because  the

loaded value is already available at the end of R4, from there you can simply forward it

to this EX, and also you can forward it to this EX because it is ahead in time. So, by

using  the  same  forwarding  hardware  we  can  solve  the  problem  for  the  subsequent

instructions. The only problem is for a load followed by its immediate use, there has to

be one stall cycle in between. 
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Since we are not able to solve this problem using forwarding, we have to insert some

kind of a stall cycle. What we do is that, there will be a special hardware that will be

added to your decoding logic that will be called pipeline interlock. During the ID stage

an instruction gets decoded. So, here only you will be able to know that your operands

are R4 and R8; and already previous instruction is having R4 as the destination that is

also known to the control unit. That hardware keeps track of that that, which register was

the destination in the previous instruction and which are the registers that have been used

in the current instruction.

If it  finds that there is a conflict  like that, there is a hazard, and then a stall will be

inserted in the pipeline -- in this case a one cycle stall. The second instruction will be

decoded, and find that it uses R4. So, it cannot start its EX here, it has to defer by one



cycle and it can start the EX here. When one instruction gets deferred all subsequent

instructions will also get differed. 
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Here we introduce a terminology called instruction issue.

You see the instruction that is operating on some data; they will typically be some ALU

instruction,  ADD, SUB like that.  The actual operation is being carried out in the EX

stage, before that in the ID stage you are decoding the instruction. You are trying to find

out what the instruction type is, what are the input operands, and so on. When you are

moving from ID to EX, it means that you are actually starting to execute the operation. It

is during that phase you say that we are issuing the instruction.

When  you  say  instruction  issue,  this  is  actually  the  process,  when  an  instruction  is

moving from the ID stage to the EX stage.  Now one good thing about  the MIPS32

pipeline is because of the simplicity of the instructions, decoding is also very simple and

the kinds of data hazards that are possible all can be detected at the end of the ID stage

itself, because when you are decoding an instruction you have already know that this is

an ADD instruction, R4 and R8 are input operands, and so on. You can check whether

previous instruction is writing the value of R4 or R8; if so, there will be a hazard which

will be detected. 



So, it will know that at least one stall cycle is required. It will insert a stall cycle before it

can be issued; before it can be moved to the EX stage.

(Refer Slide Time: 14:36)

Let us look at a very common example that appears in typical programs. A = B + C is

just a representation of some kind of operation. MIPS32 instructions for this are written

here. A straight forward implementation of this operation will be to load the value of B

into some register, load the value of C into some register, add R1 and R2, put the result

in R5, and finally, store R5 into A.

But here the second load and then add results in a data dependency, and there will be a

hazard and there will a stall. This stall is unavoidable. 
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LW R1,B; the next instruction will be LW R2,C; then it is ADD R5,R1,R2 then there will

be SW R5,A. Now you see here what we are doing the first load can proceed without any

problem. For the second instruction also there is no dependency. But here there is  a

dependency between this loaded value of R2 and the use. So, when this ADD is fetched

here and the ADD is decoded here, when you are decoding here itself your coming to

know that this hazard is there. So, what we do? You insert a stall here and you issue the

instruction; that means, you move it to the EX stage after this stall and so on.

So, only one stall will be required in this case. 
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Let us check another example because this will illustrate a few other things. Here there is

not one, but two operations in sequence. When you translate this into MIPS code, this

straightforward translation will be something like this. 

This is a straightforward implementation, but you see where are the problems? Here I

find there is a load followed by a use; R2 is used here, here there is another load R2

followed by use. So, there will be a one stall cycle required here, and one stall cycle

required here. There will be two load interlocks. If you run this code just like this the

control unit will be inserting two stall cycles. So, the total time that we require to execute

this code will be two clock cycles extra.

Now, let us do something here. Suppose we have lot of registers with us; so, what we do

is something like this. We call this instruction scheduling and this modified code is called

scheduled  MIPS  code.  Thee  first  modification  is  that,  we  are  not  using  the  same

registers. The first instruction is using R1 and R2, but for this second one we are using

R3 and R4. This is a task that the complier will be doing; the complier will be moving

some instructions around.

Now, what is the purpose of moving it here? You see that problematic data hazards have

been eliminated. So, the problem case was a load followed by its immediate use. So, here

I have inserted another load instruction in between, and so on.



The compiler can do this kind of code analysis and can move instructions around, these

are very interesting problems for the compiler to solve, and if we do this then both the

load interlocks are eliminated. This modified code will be able to run without any stall

cycles; you can save two clock cycles in the execution of this code. This is the advantage

of scheduling of the code.
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What we saw is that scheduling can improve performance, but in general it increases the

number of registers required. In the previous case we had to use two addition registers

R3 and R4. 
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What I am saying whenever there is a load followed by its immediate use, as if there is a

gap or slot coming here between the two instructions; this gap is called the load delay

slot. If we do not do anything then the control circuit has to insert one stall cycle here.

But now the compiler knows that there is a load followed by its immediate use. So, it

will try to move some other instruction from somewhere else into this delay slot. If it can

do that then it can avoid that stall cycle. Coming back to this the load instruction that

requires that the following instruction do not use the loaded value, we call it as delayed

load and that slot is called delay slot or in this case load delay slot. As I had said the

compiler will try to move instructions around and try to fill up this delay slot. If it cannot

find any instruction to move, then it can insert a special NOP instruction, which does

nothing.

The size of  the code will  increase,  but  there  will  be no hazard.  So, the control  unit

becomes simpler; it does not have to check for any hazard here if the compiler takes the

responsibility.

So, if you delegate the responsibility to the compiler and let the compiler check for the

hazard situation, then you can solve this problem. 
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Generally speaking data hazards can be of three types, the first one is the one that you

have seen already, read after write. Some instruction is writing a data somewhere register

or memory, some other instructions is reading from there. There can be some other kind

of data hazards also, write after read.

Reading takes place first writing takes place later;  in MIPS32 this will never happen

because reading of the registers take place always in the ID stage, and all writes take

place in  WB. So, it  is  never  the case that  you do the write  before you do the read.

Similarly for write after write, two instructions are writing, say the first instruction has

written  first,  second  instruction  next,  but  the  other  thing  can  also  happen.  The  first

instruction is writing later, the second instruction is writing earlier. This will also not

happen in the pipeline because all instructions take 5 cycles to complete. 

Later on we shall see how we can extend the pipeline to handle multi cycle operations.

There we will see that write after write hazard can also occur. So, in the MIPS32 integer

pipeline only the first kind of hazard is possible and the only problem case which results

in stall  cycles  is a load followed by immediate  use.  All  others can be eliminated by

forwarding, and we put lot of responsibility on the compiler.
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Now  coming  to  control  hazard;  control  hazards  arise  because  there  are  branch

instructions in a pipeline. Branch instruction means the next instruction to be executed

can either be the sequentially next instruction or instruction from somewhere else. If the

branch is actually taken it is a jump or a branch that is taken.

The next  instruction  to  be executed  will  from the target  and not  the next  sequential

instruction. This is the problem in a pipeline because the instructions are coming one by

one;  they  will  all  be  entering  in  the  pipeline.  Suddenly  we  find  out  that  an  early

instruction was a branch it has to be taken. So, the following instructions all have to be

ignored, they will have to be discarded and the new instruction fetch started from the

target. When a branch is executed the value of the PC is normally changed to the old PC

+ 4.

But when a branch is taken it can be something else; the PC can be replaced by a target

branch address, but that target branch address is normally not known till the end of the

MEM cycle, which means that that you may require 3 stall cycles to take the decision

that whether the branch is taken or not. By the time you take decision already three

instructions have entered the pipe. So, there is a lot of loss in performance this is what

meant by control hazard.
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An example is shown here.
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There are many ways to reduce branch penalty. We have to tackle two sub-problems,

determine whether the branch is taken or not, and what is the branch target address. Both

of these have to be calculated early enough so that our stall cycles can be reduced. Now

in MIPS32 because of the simplicity of the instructions, this is easier. For computing

whether a branch is taken or not, we have to check whether the register is 0 or non-zero.

Registers are already fetched in ID, and you can add a simple 0 comparator that hardly



takes any time; whenever you are fetching that register you also check whether it is 0 or

non-zero.

The decision is already known at the end of ID itself. So, in MIPS32 the branches either

require testing for 0 or comparing two registers because you are fetching all the registers

in ID. So, you have to add some special comparison logic. 
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And the second one is to compute the branch target address. This you can also calculate

earlier by using a separate adder. At the end of the ID cycle you know now whether the

branch is taken or not taken, and also you know the branch target address. You do not

need to wait for three cycles, you need to wait for a single cycle only.
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Earlier in the new approach we have said that you have to wait till MEM, but now we are

saying that because of the simplicity of the MIPS, at the end of ID we will come to know

that whether the branch is taken and also what is the address. We can start fetching after

a maximum of one stall cycle. This can be ignored and you can start fetching from here.

So, one stall cycle will be required. We shall see later how this branch penalty can be

further reduced in general.

We have come to the end of this lecture. In the next lecture we shall continue with this

discussion on control hazard because there are many ways to reduce the penalty due to

branch instructions. We shall discuss these things in our next lecture.

Thank you.


