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Lecture - 55
Pipeline Hazards (Part 1)

In the last lecture we have seen the pipeline structure for the MIPS32 processor. You may

say that it is an ideal pipeline as we have not considered many of the real problems or

conflicts that can arise and cause so-called hazards during instruction execution. 

(Refer Slide Time: 00:57)

In the next few lectures we shall be looking at these kinds of conflicts or hazards that can

impact  or degrade the performance on a pipeline to a great extent,  and what are the

approaches we can use to avoid such degradation to the extent possible. We start our

discussion on pipeline hazards in this lecture.



(Refer Slide Time: 01:23)

Let us try to first understand what is a pipeline hazard. We have seen an ideal pipeline.

An  instruction  pipeline  in  the  ideal  sense  should  complete  the  execution  of  one

instruction every clock cycle, but when we say there is a hazard, it means some kind of a

scenario because of which we cannot operate the pipeline at its maximum possible speed.

Because you see there are several instructions that have entered the pipe already, several

instructions are in various stages of execution, there can be some dependencies between

the instructions. They may be trying to access some common resources because of which

there can be a conflict, because of branch instructions we may have to wait till we know

the outcome of the branch and the target address. There are several such instances that

may prevent a pipeline to work with its maximum possible capability or speed.

Loosely  speaking  such  situations  are  called  hazards.  They  prevent  a  pipeline  from

operating at  its maximum possible clock speed, which means that we cannot feed an

instruction  every  clock  cycle.  Such  hazards  can  prevent  some  instructions  from

executing  during  its  designated  clock cycle.  This  means,  suppose  an instruction  was

supposed to be entering the pipeline now, but maybe it will have to wait for one clock

cycle.  Broadly  speaking  hazards  can  be  classified  into  3  types;  structural,  data  and

control. Structural hazard arises due to resource conflicts,  like one example you have

already seen in memory access, IF and MEM, two instructions may be trying to access

instructions and data leading to structural hazard. If there was a single memory module



then  one  of  the  instructions  will  have  to  wait,  but  because  we  have  use  separate

instruction and data caches they can proceed together. 

Because of data dependencies between instructions, say one instruction is producing a

result that the next instruction is using, data hazards may arise. Control hazard may arise

due to branch and other instructions like interrupts that change the program counter.
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What happens when such hazards show up? Well there are several alternate strategies we

shall be looking at, some of them use some special hardware to detect the hazard. To

detect hazards whenever they appear, and to try and avoid the conflict; one alternative is

to have some hardware, which will be trying to detect such situations that can result in

hazard, and try to overcome them automatically. But as an alternative we can simply

insert stall cycles without using special hardware; this is a cheaper alternative. 

Suppose I find that there is a hazard, if I allow the next instruction to enter the pipe there

will be an clash somewhere. So I hold the instruction back, maybe I feed it in the next

clock, not in the present clock. I am inserting a stall cycle, for one cycle I am not feeding

anything in the pipeline. I am stalling the pipeline for one cycle and then again I am

feeding the next instruction after that. Then the hazard will not show up. If I follow this

principle and I stall one instruction, then all the instructions that follow this particular

instruction  will  also  get  stalled  because  unless  this  instruction  enters  the  pipe  those



instructions will not be able to enter the pipe also, and depending on the criticality of the

hazard number of stall cycles can vary.

The important thing to notice is that whenever we are inserting stall cycles like this, the

understanding is that the instructions that have already entered the pipeline run in the

process of execution, they can proceed normally; there is no problem, but I am holding

back the instructions that are following, I am inserting one or more stall cycles. They will

be delayed, and after the stall cycles they will be fed into the pipeline. This is what I just

now said, instruction before the stall instruction can continue, but no new instructions

can be fetched during the duration of the stall. We may have to insert such stall cycles

and this will result in performance degradation, because we are not allowing instructions

to be fed or entering the pipe in every clock cycle, that is why we are not able to get the

full pipeline performance that is possible in the ideal case.
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Let us make a simple calculation. With respect to a non-pipelined version suppose you

are trying to estimate the speedup in a pipeline. A simple measure of speedup is to divide

the execution time of the non-pipelined version with the execution time of the pipelined

version. How I can calculate execution time? One simple way will be to multiply the

cycles per instruction of the non-pipelined version with the clock cycle time assuming

that  the number of instructions  are the same in the both the cases.  Similarly for the

pipelined version CPI for the pipelined version multiplied by the clock cycle time. 



So, I can separate this out -- the clock cycle times and the CPIs. Now when we talk about

pipelining we can either say that we are trying to reduce the CPI, or we can argue that we

are trying to reduce C. But actually reducing C is not true because we are not really

reducing the clock cycle time, but you can argue in some way that in a non-pipelined

version you had the whole computation as a block. As if your clock was running, let us

say, five times lower.

But now by making a pipeline with five stages, you are making the clock run five times

faster that may be one argument, but a better argument is that we are not saying we are

making clock faster, but we are saying we are making CPI smaller. You can argue in

either way.

Another thing is the ideal CPI. In the absence of any hazards it will be equal to the CPI

of the non-pipelined version divided by pipeline depth. Pipeline depth means number of

stages in the pipeline; in our example pipeline depth was 5. In the ideal case we are

getting a speedup of 5. So, CPI was reducing by 5 times.
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Now suppose we are using the method of inserting stall cycles for removing hazards. The

actual CPI of the pipeline will obviously be greater than the ideal CPI. It will be ideal

CPI plus  average  pipeline  stall  cycles  per  instruction;  this  will  be the  impact  of  the

hazard on the average case. So, CPI_pipe you can write like this.



Just remember this expression. We shall be using this later in some examples.
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Let  us look at  the hazards now one by one.  Structural  hazards arise due to resource

conflicts. Suppose I have a single copy of a resource and two instructions in two stages

are trying to use the same resource. We have seen two examples, one is for memory and

the other is for the register banks, the ID stage is trying to read from register, WB stage is

trying  to  write  into  a  register.  These  are  examples  of  structural  hazards.  So,  if  the

hardware does not support concurrent or overlapped execution, structural hazards will

show up. If we have a single cache and not separate instruction and data, then when an

instruction is being fetched and some other instruction is trying to read or write, the next

instruction will have to wait.

So, you have to insert a stall cycle. Similarly an instruction is trying to read data from the

register bank while some instruction is trying to write into a register. Again if you do not

follow the principle I mentioned earlier, that you write in the first half of the clock and

read in the second half of the clock, then the instruction that is trying to read data will

have to wait. 

So you see that if you do not take precautions or put in some additional hardware to

detect and avoid this kind of a hazard, your stall cycles will get inserted automatically;

otherwise your instruction execution process will not be correct. Another example I am

giving. Let us say some of the functional units like floating point add or multiply, they



are not fully pipelined. And suppose there are two consecutive instructions that are trying

to use floating point add or floating point multiply. Because they are instructions that

consume more than one cycles, they will result in stall cycles because when say the first

instruction  is  doing multiply they will  be using multiple  clock cycles  during the EX

stage, because multiply cannot finish in one cycle.

So, it is consuming the EX stage for more than one cycle. If the next instruction is also

requiring floating point multiplication, next instruction will have to wait and you will

have to insert stall cycles. 
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Let us say we have a single port memory system; that means, a single memory system

that stores both instruction and data. We do not have separate instruction cache and data

cache.  We  have  a  sequence  of  instructions,  a  LOAD  followed  by  a  sequence  of

arithmetic and logic instructions. In the ideal case execution will proceed like this.

But as I said this LOAD instruction will be trying to access memory here, do a load, and

this instruction will try to do the instruction fetch here in IF. So, there will be a clash; this

will be a structural hazard. Suppose we have not replicated the memory. I can insert a

stall  cycle  here.  The hardware  will  automatically  detect  that  there  is  a  conflict,  this

instruction is trying to access memory, this was a LOAD instruction. So, you cannot do

an instruction fetch here. It will automatically insert a stall cycle and it will resume the



instruction fetch in the next cycle. All instructions that follow will also incur a one cycle

delay.

Here we show that how we can insert a stall cycle to eliminate this structural hazard.
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Now, let us work out a simple example. We consider an instruction pipeline, where data

references constitute 35% of the instructions, which means load and stores. And ideal

CPI ignoring structural hazard is 1.3.

Now  the  question  is  how  much  faster  will  the  ideal  machine  without  the  memory

structural hazard be. We use this expression that was worked out earlier. For the ideal

machine the ideal CPI is 1.3 and for the ideal machine there is no structural hazard. So,

pipeline stall cycles per instruction will be 0, and for the real machine what will happen?

For all such data reference instruction there will be one cycle delay because of this stall.

So, ideal CPI is 1.3 and pipeline stall cycle per instruction it will happen 35% of the time

and for each of that case there will be a 1 stall cycle inserted.

If you just calculate the speedup this becomes 1.65; 1.65 by 1.3 is 1.27. So, the ideal

machine is 1.27 times faster than the real machine. This means that in reality whenever

you  have  this  kind  of  hazards,  your  performance  degrades.  There  will  be  a  27%

degradation in the performance. Now the question is why cannot we remove structural

hazards by inserting additional hardware since this is so important. The question is how



much is the cost to replicate the hardware. For I-cache and D-cache you can possibly do

without  much  increase  in  cost,  but  there  are  a  few things  that  you  possibly  cannot

replicate. So, to reduce cost of implementation sometime structural hazards remain in

certain  cases.  For  instance,  pipelining  all  the  functional  units  may be too  costly, for

instance the divider.
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And third thing is that you can bank on Amdahl’s law again you see that how frequently

such structural hazard scenarios occur. If you see that such structural hazards are not that

frequent then you may avoid the effort and cost; you may see that well I find floating

point division in a program appears very rarely. So, let me not invest anything to improve

that to remove that hazard, let that hazard remain. Whenever there is a floating point

division followed by another division let  stall  cycles  be inserted,  but for most of the

scenarios such occurrences will not happen. We are trying to make the common case fast,

but because memory access structural hazard is very frequent, we replicate the hardware

because this is something we cannot compromise, because if we use a single integrated

cache for every memory access we may have to use one stall cycle that is too expensive.
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Now, let us come to data hazards. Data hazard means there is some dependency among

the instructions. Let us say I have an ADD instruction that produces a result in R2, there

is  a  following  instructions  which  uses  the  value  of  R2.  So,  unless  you  take  proper

precaution  you  see  normally  what  happens.  Normally  this  ADD  instruction  will  be

writing the value of R2 in WB stage and SUB instruction will be prefetching all register

operands in ID. So, it is trying to prefetch before the value has been written.

If you do not take proper precaution this SUB instruction can fetch the old value of R2

and not the latest one, because R2 is written here and you are trying to read R2 in the ID

phase here; this is what data hazard means. Apparently what it means is that you possibly

have to insert two or more stall cycles, because unless WB completes you cannot use ID,

maybe this ID you have to shift here, but you will see that we can do better. 
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 A naïve solution is to insert stall cycles; after the SUB is decoded, we see that here also

we are using R2 ne. So, we will be waiting till WB is completed -- insert stall cycles. So,

in the naïve implementation 3 clock cycles stall should be used like this.
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While decoding you find out that R2 is here and already the earlier instruction has R2 as

target. So, three clock cycles are wasted.
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But fortunately because of the simplicity of the instruction set we can reduce the number

of stall cycles. How you can do that? We shall explore two methods; one is called data

forwarding, and splitting a clock cycle will two halves, register writing is done in the

first half and reading in the second half. The idea is very simple; see the first instruction

which was generating the result R2, was writing the result in WB, but if you look at the

instruction execution process, the value of the result was already calculated at the end of

EX.

But the value is written into the register in WB. So, if we take the output of the ALU

directly that is already calculated, and by using some additional MUX we forward that

value to the next instruction. May be we will not have to wait for the WB stage, we may

get the value earlier. This is called data forwarding or bypassing,  by using additional

hardware consisting of MUXes. The data required can be forwarded as soon as they are

computed, instead of waiting for the result to be written into the register file.
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So,  in  bypassing  the  result  computed  by  the  previous  instruction  is  stored  in  some

register, it is the just output of the ALU. You take the value directly from there, do not

wait till WB, and forward to the instruction that require the result. To do this you need

some  additional  connections,  data  transfer  paths  and  some  additional  MUXes.  Your

control circuit also becomes a little complex; it will have to analyze the source and the

destination  registers  of  consecutive  instructions,  and it  will  automatically  activate  or

deactivate this kind of forwarding paths whenever required.
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Let us take an example here that shows lot of data dependency, like this ADD instruction

generates R4, this R4 is used in all  consecutive four instructions.  In the normal case

result will be written in WB, but these instructions are trying to read them here, here and

here.  So,  first  instruction  computes  R4  that  is  required  by  all  subsequent  three

instructions; the dependencies are shown here, but the last instruction is using ID after

WB. So, it is not affected. It is only the three consecutive instructions that need to be

looked at. 

We have already solve this by splitting the register access; we are saying writing is done

in the first half of the clock cycle and reading is done in the second half of the clock

cycle. So, this conflict is already resolved. Actually we are left with these two conflicts,

but one thing you see it is possible to remove the two conflicts also. Why, because the

first instruction is calculating R4 in the EX stage, the result is available here.

You need not have to wait till WB to be written into R4, you can directly take from here

and forward it to the EX stage here, where this SUB will be requiring. 
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Data forwarding means the value of R4 is actually getting calculated here, and you are

forwarding the value like this. But as I have said you need to forward only to the two

consecutive instructions, you do you really need beyond that. We need to forward the

result  directly  from the output  of the ALU in the EX stage,  to the appropriate  ALU

register of the following instruction. When the next instruction enter the EX stage, this



instruction will already be in the MEM stage. From there the result has to be fed back to

the input by using some multiplexer and additional paths.
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 And this already we have set earlier. By splitting register read/write we have already

avoided or reduced one dependency. In the naive forwarding there was the requirement

of forwarding three instructions, but if you split register read/write we reduce it to two.

This we have already discussed earlier in detail. 
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Because of this register splitting, this conflict has been avoided. 
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But for the others, this is the forwarding hardware we require. This is the EX stage, this

is the ALU where the actual calculation is done. Normally the data input of the ALU is

coming from the earlier  stage, but because of the forwarding we use some additional

connections  from this  ALUout  from here.  Similarly  if  there  is  a  dependency  of  the

second most instruction, the instruction will already be moved here. So, this ALUout is

copied here, this value also is getting fed back here or here. Well here I am showing

another feedback path also; this will have required for LOAD instruction.

But  in  the  example  you  have  not  seen this  yet,  but  this  is  the  complete  forwarding

hardware. For LOAD instruction data will be read into the LMD, this LMD value is also

forwarded. You see basically you need some additional inputs to the MUX; earlier it was

2:1 MUX now it has become a 5:1 MUX, this is the actually the forwarding hardware I

am talking about. The first instructions that generates the result has come here, now that

partial result is here, the next instruction has come here and is trying to use that result,

you forward it from here or the instruction generating result has come here the next to

next instruction has reached here. So, you forward it from here ALUout just like that.

Here, all possible paths are shown. Either you forward it from ALUout here or for LOAD

instruction from LMD.

With this we come to the end of this lecture. What we have seen here is the importance

of handling and tackling hazards because they can cause a very significant degradation in



performance. We have looked at structural hazards and mentioned how structural hazards

can be avoided by replicating resources. 

Then we looked at  data  hazards.  Data  hazards  are  important  and apparently  without

anything you are requiring three stall cycles for at least the ALU instructions with data

hazards. But what we saw is that using forwarding hardware and by splitting the register

access we are able to totally eliminate data hazard related stalls for ALU instructions. In

the next lecture we shall  see what will happen if there is a data hazard for a LOAD

followed by an ALU instruction, which uses the loaded value. There we shall see that it

is not possible to totally eliminate the stall cycles, but we can try to reduce it again. This

we shall discuss in the next lecture.

Thank you.


