
Computer Architecture and Organization
Prof. Indranil Sengupta

Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur

Lecture – 51
Bus Standards

In this lecture we shall be discussing on some of the bus standards and protocols that are

used inside a computer system. Not necessarily only for interfacing the peripheral

devices, but also the bus that exists between the processor and the memory. We will be

looking at the overall picture first, and then we shall be looking at one very popularly

used bus standard, namely USB.

(Refer Slide Time: 00:52)

Let us start by defining a bus. A bus roughly refers to a common shared path. In a city

when you board a bus, you see the bus takes a group of people from one point to the

other. It is like a common shared path. Many people are using the same communication

facility, unlike a private car that is dedicated to a person. So, a bus means a common

shared path that can be used by more than one entities for communicating between two

end points.

Basically the bus is a collection of wires. As this diagram shows, you can have your

CPU, your memory and some secondary IO device like disk. This is a simplified diagram

and this is your bus. This will be a collection of wires and connectors; through this bus

data will flow.

Now, in this bus what are the basic things that should be there? Well, of course, there

should be the address lines. When CPU is sending some data, CPU will also mention that

to whom that data is meant because there can be multiple devices on the bus. Then of

course the actual data. How many data bits can be sent at a time depends on the width of

the bus. How many wires are there, then there can be some control signals, which will

tell what kind of operation CPU is trying to do. Whether CPU is trying to read the status

of the device, or wants to send some data or receive some data and so on. In addition,

there can be a set of power supply lines, various voltages, so that some of the devices

that are connected can directly draw power from those lines.

So, the most important lines in the bus are address and data, because address will specify

the destination. And data bus will carry the actual data.

(Refer Slide Time: 03:24)

Let us look at some of the terminologies. When you say bus protocol, what does it mean?

The dictionary meaning of protocol means a set of rules or conventions that both the end

systems should comply, so that faithful communication can take place. Similarly, in a bus

or for any communication system, there has to be a protocol. Both the end systems

should be following the same set of rules, so that data communication can take place

without any problem.

So, bus protocol essentially constitutes the rules that determine the format and

transmission of data through the bus. Now, the bus can be either parallel or serial. For a

parallel bus, the idea is that data are transmitted in parallel, meaning I can have 8 or 16

or 32 parallel lines in the bus through which data can be transmitted per cycle.

The advantage here is obvious because there are so many lines with which data can flow.

It is fast, but the disadvantage is that your cable or the bus will be very thick. There will

be so many wires. So, for a long distance communication, the length of the cable will be

large, the cost of the cable will also be higher and because there are large number of lines

that are stacked in the same cable, there can be inter-line interference, particularly when

data communication is taking place at higher frequencies. Because of this, parallel bus

cannot be used for longer distances.

In fact, most of the communication that we carry out today is based on some kind of

serial bus. In our earlier systems like that printer port I talked about, some parallel bus

standards were there, but today you will find very few.

In contrast the serial bus has a single line for sending and a single line for receiving.

When you have a single line for sending, then you can have that serial communication

protocol I talked about earlier using start bits and stop bits to synchronize between the

sender and receiver. That kind of a format can be used. Well, there are other ways also.

Some synchronous kind of communication can also be done, where the sender and

receiver knows the exact speed of data transfer. Those are also possible.

Because the number of lines are very few, the cost of the cable will be very low, so for

long distance communication, it will be very suitable, and because there are very few

lines, interference will be very less. The disadvantage is that because you are sending the

data serially bit by bit, it will be relatively slow as compared to the parallel bus.

(Refer Slide Time: 06:53)

In a bus as it is said there can be many nodes or devices connected to it.

(Refer Slide Time: 07:03)

Let say here we have a bus and we denote the bus like this. There can be several devices

that are connected to the bus. The devices may not all be of the same type, they can be

different. One can be more powerful, one can be very simple. I am calling them D1, D2,

D3 and D4.

Now, by calling the bus master and slave what I mean to say is that suppose D1 and D4

wants to communicate, now depending on the bus protocol and the capabilities of the

device interfaces, there can be a scenario like this where this device D1 will be

designated as the master and D4 will be designated as the slave. What does this mean?

D1 being the master will be able to initiate the data transmission, but D4 on its own

because it is the slave cannot initiate. The master is always responsible for imitating

every data transfer over the bus.

There are many protocols where there is a master-salve relationship between the various

devices and it is the master which takes care or initiates the communication with the

other devices that are slaves.

Now, we are talking about a bus or the buses that are there inside a computer system. If

you just open your desktop or a laptop, you will see a lot circuitry inside, but

schematically or architecturally how does the devices get connected inside, say on the

mother board. Here we are talking about that.

Local or system bus is a term we used to refer to a bus that connects CPU and memory.

You know that in a computer system, the CPU and the memory are the fastest two

components and the communication between them is the most crucial in determining the

overall performance of the system. So, this bus that connects the CPU and the memory is

referred to as the local bus or the system bus.

Following the nomenclature of Intel, we can distinguish the buses as front side or back

side. Front side bus means the bus that connects CPU to the other component. This was

the original concept, but if you look at the modern motherboards, front side bus refers to

a bus that connects CPU to the north bridge chipset.

(Refer Slide Time: 10:30)

So, here we are talking about a connection like this. There is CPU, there is something

that is called North Bridge and the CPU is connected to the north bridge by a bus that is a

high speed bus. North Bridge may be connected to various high speed devices like

memory, GPU, etc.

There can also be a backside bus that can connect CPU to the L2 cache. If it is outside

the processor or level 3 cache, there can be a memory bus which connects north bridge

chipset to the memory.

There are different kinds of devices that are connected there. There can be a backside bus

also where the cpu is connected to L2 or L3 cache.

(Refer Slide Time: 11:58)

You have AGP bus. It refers to the bus through which the graphics cards are connected.

Here the north bridge chipset is connected to GPU. These buses are referred to as AGP

bus, and in addition there are several other buses inside CPU. There is another device

which is called the South Bridge. The North Bridge is connected to the South Bridge and

the South Bridge is relatively much slower in speed. South Bridge typically connects

devices that are not that high speed.

Architecture wise you can see there are so many buses inside the system, and the devices

are connected to one or more of these buses. Now, talking about some of the standards

that evolved over the years, these are standards through which you can connect some

peripherals to a computer system. It can be motherboard, it can be some connectors that

are connected to the mother board. Well, ISA, PCI, Firewire, PCI express and today you

have USB, these are all examples of bus standards that connects peripherals to the

motherboards. In some way, they vary in speeds and other capabilities.

(Refer Slide Time: 13:51)

Now, let us look at a typical architecture of a motherboard inside a modern day PC. At

the top I am assuming that this is a dual-core processor. There are two cores that are

shown here. You see there is 3800 MHz clock. The core is running at 3.8 GHz, there is

another core; and inside the core, there is 2 megabyte cache. This is the L1 cache and

here you can see is the north bridge.

When you buy a computer system or when you look at the specification of PC, you will

see that it does not only talk about the processor and the clock, it also uses a code name

for a chipset.

Chipset actually refers to the north bridge and the south bridge combination, what are its

capabilities, what are its speeds and so on. A chipset will determine that. So, this north

bridge and south bridge taken together, this is the chipset you can refer to.

You see the north bridge, how it is connected. On one side, it is connected to the core, the

processors. This is the high-speed bus. As you can see this runs at 1066 MHz. So, it is

about 1 GHz speed and the data bandwidth is about 8528 MBps. So, it is pretty fast.

North Bridge connects to main memory via the memory bus. In this example memory

bus is running at 533 MHz and it can transfer data 4264 MBps. This is DDR RAM at 533

MHz.

From the other side of the north bridge through AGP bus, you have the graphics card.

North Bridge is connected to the south bridge through a relatively lower speed link. This

is 100 MBps.

Now, south bridge connects to the other devices like it can have IEEE 1394 interface that

is sometimes called firewire. Of course, now firewire has become obsolete. In modern

computers, you do not see firewire any more. You can connect devices like CDROM,

DVD through this. You can have a network adapter card, which also can be connected

through it. You can have the slow systems like keyboard and audio. This can have a

much slower bandwidth. You can have a hard disk connected through either IDE

interface or SCSI, or here you can have USB interfaces, where you can connect various

sort of devices.

The point to note is that in modern systems as the standards evolve, USB standard has

become more widely used and faster. So, there are USB versions which instead of being

connected to the south bridge, they are connected directly to the north bridge because of

their much higher speeds.

So, architecturally this is what that exists inside CPU, motherboard and you can see there

are so many different buses that exist there and each of this bus will have their protocols,

their rules. We are not going into the detail of all the buses, rather some of the basic

concepts I will try to highlight that will be common to most of these buses.

(Refer Slide Time: 18:12)

Talking about a bus, some of the characteristic features are bus width, meaning how

many data lines are available, how many bits of data you can transfer in every cycle, and

the speed of the bus or the bandwidth. It is total amount of data in bits per second or

bytes per second that can be transferred over the bus.

Let us look at these features, bus width and bandwidth for some of the commonly used

bus standards.

(Refer Slide Time: 18:44)

Some of these you cannot see anymore; they have become obsolete. You see the ISA bus

was 16-bit bus that carried 16 wires and the bandwidth was 15.9 MBps. This was

extended to EISA that is 32 bits at 31.8 MBps. PCI was also 32 bits, but the speed was

about four times. Then, 64 bit PCI came version 2.1 where the bus width was 64. So, the

speed was again increased significantly.

So, you see that the parallel buses exist more inside a system within the mother board,

but today when you connect an external peripheral with the computer because of the cost

of the cabling, the data communication is mostly serial in nature. But inside the mother

board as you can see, these buses they are all carrying 16, 32, or 64 bits in parallel.

The graphics AGP bus is 32-bit, but it runs much faster at 2133 MBps. Various versions

of USB are there.

Firewire was supposed to be one of the fast standards. This is also serial. This can go up

to 400 Mbps, and PCI express is one of the fastest buses available. It carries 16 wires and

the speed is 8000 MBps.

(Refer Slide Time: 21:05)

Buses can be synchronous and asynchronous. I will take an example to illustrate the

difference between synchronous and asynchronous. With respect to IO transfer, you have

already seen. The concepts are very similar for a synchronous bus. There will be some

kind of a common clock between the sender and the receiver that will synchronize all

data transfer operation over the bus.

In contrast an asynchronous bus does not have any common clock and just like in

asynchronous IO we had to use handshaking, here also there will be a number of

handshaking signals the master and slave will be sending each other, so that the data

communication can be completed and both sides will be knowing about it.

So, let us take an example.

(Refer Slide Time: 21:57)

This is an example of a bus that connects CPU and the memory. The first example we

take is that of a synchronous memory read. We are showing the signal timing diagram.

First one shows the clock and these are the clock states T1 T2 T3. This is the address bus,

data bus. These are two control signals, memory request and read.

In the first step CPU places the address of the memory location on the address lines. It is

here in the first clock. After the clock rises high, there will be some delay. After that

delay here, this part, the CPU puts the address of the memory location in the address line.

During this time, none of the memory request and read lines are active. The bar means

they are active low. They will be active when they are put to low or 0. So, first step is to

put the address.

(Refer Slide Time: 23:06)

After the address is put, second step is CPU will assert the memory request, and read

lines. Memory request line will be set to low and read line will also be set to low, so that

the memory system will now know that it is a memory request, and this CPU is

requesting read. At the end of T1, these two signals have been asserted. This address is

already valid.

In the third step, memory controller will be accessing memory location and load the data

on the data lines. Now, memory will be having some access time. Let say the read signal

has activated here, and it will take so much time and it is here when the valid data will

come on the data bus. So, you are giving sufficient time for the memory to access the

contents.

The data will be loaded on the data line here, somewhere in T3. When the data has

already arrived, sorry the last step will be CPU will be reading the data because it is

already on the data line and it will deassert memory request and read lines because it is

already done. So, memory request will again be set to high, read will again be set to high.

This is synchronous because CPU knows exactly how much time memory will take to

read the data. It is waiting for exactly that much time. It will expect the data is already

there. It will read from the data bus. So, this is what is meant by synchronous interfacing.

CPU puts the address on the address bus. It activates read and memory request signal

because it is synchronous, and it knows exactly how much time memory will take. Just

after that much time, it reads the data from the data bus and again de-asserts memory

request and read. But for asynchronous interface, CPU may not know in advance exactly

how much time memory is taking. So, there has to be some signal back from the memory

indicating that data transfer or memory access is complete.

(Refer Slide Time: 25:36)

This example is that of asynchronous memory read. I am not showing the clock signal

because earlier everything was happening in synchronism with the clock. We are

assuming both CPU and the memory system were having access to the same clock, but

for asynchronous system here, we are assuming that there is no clock. There are other

handshaking signals using which CPU and the memory, both will know exactly what is

going on.

There are address lines, data lines and there are some other signals. You see memory

request read ,this MSYN and SSYN. These are synchronization signals.

The first step as usual will be for CPU to put the address of memory location on the

address lines. So, a valid address is available on the address lines.

(Refer Slide Time: 27:01)

.

After the address has become stable, this symbol means it has become stable. It is here

stable, CPU will assert memory request and read lines. These are two signals that CPU is

sending to the memory system. So, memory request line is activated and read line is

activated. This will be after a little delay, after the address lines have been stabilized.

Once these two have been activated, now memory read process starts.

In the third step, what will happen is CPU will assert MSYN line. After memory request

and read, now MSYN; this is the handshaking signal. MSYN will tell the memory

system that CPU is now expecting some data from memory. This MSYN is the signal

generated by CPU. It is asserted after memory request and read are asserting.

Then, memory controller will take some delay depending on the access time. This can

less and that can be more. So it is not fixed; load the data from the data line. After some

delay, the data will come on the data line and once it is valid, the memory controller will

activate SSYN. The signal that comes from the memory controller to the CPU, when it

sees that SSYN is activated, it will know that data is now available on the data bus.

Now what CPU will do is, it will read the data from the data bus and will de-assert

memory request, read and MSYN. And lastly, memory controller will de-assert a SSYN

after all these lines have done indicating that the operation is over.

(Refer Slide Time: 29:08)

Essentially in this method if you see, you have CPU and you have the memory system.

Actually the memory controller is interacting. You have the signals that are used for

memory request read. Then, there are two handshaking signals, CPU sending to memory

the MSYN signal and memory sending back to CPU the ASYN signal. Using these

handshaking signals, data transfer can take place even without CPU and memory hearing

a clock. This is the point to be noted.

(Refer Slide Time: 30:13)

As I have given the example of Intel motherboard, bus architectures are typically based

on the bridges, this bridge concept which Intel had proposed. Many of the other

manufacturers are also going by that. Here system includes a lot of buses that are not all

connected together. They are segregated by bridges like you recall I mentioned the north

bridge will be connecting RAM, memory, video card, AGP, PCI express, the highest

speed buses.

The south bridge will typically connect the PCU that is the lower speed, PCI clock, USB

and other devices like keyboard, disk etc. So, Intel and also other companies have started

following this kind of bridge based bus architecture.

So, this is the diagram that we showed earlier. This is an example of a bridge based bus

architecture, north bridge south bridge. This is a very commonly used architecture that is

available in the desktops and laptops that we mostly see today around us.

(Refer Slide Time: 31:22)

With this we come to the end of this lecture. In this lecture, we have talked about the

need of buses inside a computer system, why we have so many different buses. Because

each bus has a specific requirement, their speeds can be varying widely. So, instead of all

devices connected to the same bus, it is always better to segregate the buses and by

isolating them using bridges, we can have a better management.

In the next lecture, we shall be looking at one specific bus standard in some detail which

is really becoming universal in today’s context, that is Universal Serial Bus or USB.

Thank you.

