Computer Architecture and Organization
Prof. Kamalika Datta
Department of Computer Science and Engineering
National Institute of Technology, Meghalaya

Lecture - 05
Instruction Set Architecture

Welcome to the fifth lecture, that is, instruction set architecture. Here we are looking into
a computer system from programmer’s point of view; like the assembly programmer --

what as an assembly programmer will have the view of the computer system.

(Refer Slide Time: 00:47)

Introduction

= [rdtruction Set Architecture (I54)
= Sarvad b @A IAbarTade batvain $0Mwas and hardwite
- Typlcally conelvts of information regarding the programmas’ s view of thas
wrehifacturs |L@. this registers, sddregs and date bipss, #i. |

= flye ooty of the inetruchan wet.

= PFany |54 are not specific to a particular computer architecture.
= [heyaursws acroad genarsbiona.
= Claggel anampbes: B8 360 saries, invel oBB saias, atc

RFFIL O Fr, HLEEFLNL FTHRTH OF
EBFTRE M Ll Ao THACRCEY il iy, R

Instruction set architecture serves as an interface between the software and the hardware.
Here by hardware we mean the processor system, like we need to know what all registers
we have and what kind of features are supported by those registers. Typically consists of
information regarding programmer’s view of the architectures, that is, the registers,
address and data buses, etc. and it also consists of the instruction set. Now, many
instruction set architectures are not specific to a particular computer architecture and
they survive across generations; like if you see Intel X86 series, across generations it has

got no change.

(Refer Slide Time: 02:16)

Instruction Set Design Issues

o Kusher of explicit opesands
= 1,4l
= LOoEatnan o 1Neé GaErands
Hgislers, adini gl T0T, F LT

= SoEi Pl 0 OF QpErE] ML a0 s

* hinen ol aperarat supparied
= Dt (E-hien], Mall-seaand [10-biand, Word [- hitn), Dosiblo (- B, #ic

- A&DD SN, & Ak it P BT, AP e

RFFIL DR HEEEFRRL FTH¥ATE Of
LEF T FE Mach LDl T HACR LY il #hi,

Now, let us see what are the important instruction set design issues that should be taken

into consideration. First is number of explicit operands. By operands, what do we mean?

(Refer Slide Time: 02:34)

o |

.-"i-&.
ADp 71k

"'\._.-'I

II.I\'\'-l l\-.
Alf'li-. I"\.:J'-\"""
ADp RI, R, B3
ADD ¥

i l'\.
ADD (R1) Loeh

'\"\.,_' —

£ i

Eiat-lry R

Let us say we have an instruction ADD. We can have several instruction variations, like

ADD R1; ADD R1, R2; ADD R1, R2, R3. By number of explicit operands here we have

a single operand, two operands, and three operands specified in the instructions. And if
we do not specify any operand, then we implicitly take some operands for this operation.

We will also see that. So, there can be zero address instruction, there can be one address

instruction, there can be two address instruction, or there can be three address

instruction.

Let us now see the location of the operands. By location of operand what do we mean is:
ADD R1,LOCA -- RI1 is a processor register, so this is within processor; LOCA is a
location in memory. So, by location of the operands, we mean either it is in a register or
it is in accumulator or it is in memory. We will see what is an accumulator in course of
time. We have to specify to the computer that the first operand is a register, and so you
have to look into a register to get the value. This operand will be a register address where

you have to go and see the value.

Now, in LOCA you have to specify that this is a memory location and you have to go to
that memory location to access this value. So, addressing mode is the way to specify the
operands in your instruction. There can be various addressing modes like register,

immediate, indirect, relative, etc, we will see in detail later.

Now, we talk about the size of the operands supported. It can be a byte, it can be half-
word, it can be a word, it can be a double, etc. By supported operation we mean that how
many operations we can specify specify and what are the various types. When I say
ADD, MUL, SUB, these are all arithmetic operations. I can also tell you some other
operations like MOVE -- these are data transfer operation, LOAD/STORE are also data
transfer operations. And there can be many other kinds of operation that we will see, but
by supported operation we mean that how many kinds of operation you are supporting in

your architecture.

(Refer Slide Time: 07:25)

Evalution of Instruction Sets

L Adiumiulsvor D ad 1960r's [EDSALC IBM 1130)

2. Stsck bsped 1980-70 [Burrcughs 3000}

1. Mamarpehamary baded 197080 [1BnA 350

4. Ragivtar-Mamaoryoagsd 19 70-prépant [Irital B

3. RagitersNagister bazed 1960:prasent [FtIPS,, DL B500, TRRR0

L: 1-sddreas inairsction J: 2. g J-addr kructicn
ADD ¥ = ACCs ACC = Blom]X ADD AR = FMemlA]= Mem{i] « Bam]i]
ADD ARG = Miem[A] = RMomiB] + Memi

O-mridireas inatnect
AW T T i | T

LLR&L LK = HJl & MEmik]

[T HARWIBL ETPTUTE 4
L A H L8 N T HRER LR, RIEC B Wi,

Now, this actually shows the evolution of instruction set. Initially in 1960s we were

having accumulator based systems. By accumulator-based system let me tell what it is.

(Refer Slide Time: 07:50)

3 i
App R |
| I l T ’
| | E-.E"-:E.--"l —M fle: i
W | o

When I write ADD R1; by this R1 will be added with what? R1 will be added with a
register present in your processor called accumulator. So, accumulator is a register
which if we have an instruction like ADD R1; by default, the value of R1 is added with

accumulator and the result is stored back in accumulator itself.

During 1960s to 70s another kind of instruction set emerged that is stack based. What do
you mean by stack based? In stack-based architecture, a portion of memory called stack
is made available. Data on the top of the stack can be accessed. If you just say ADD, and
do not specify any operand here, then by default the first two elements of the stack will
be taken out, that is 5 and 10, will be added and stored back here; so this becomes 15. By
this what we mean is that we are doing some operation where we are loading the data,
we are storing the data in the stack, and then we are performing the operation where we
need not have to specify any operand --- by default the operands are taken from the

stack. So, here it is a 0-address instruction.

Next comes memory-memory based instructions in 70s and 80s, and the representative
system is IBM 360 which has both two-address and three-address instructions. ADD A,B
--- where the data from memory location A is added with data from memory location B
and the result is stored back in A. Now, we also have register-memory based systems
where one operand will be a register and one operand will be a memory location. So,
LOAD R1,X. What do you mean by that? Load from memory location pointed by X into
R1. Similarly, we can also have STORE, store the value of R3 into some other location.
And finally, we have three-address instructions where we are specifying three addresses
and what does it do? Here R1 stores the value of R2 and R3, the result of the addition is

stored in R1. So, in a single step, we can do this.

(Refer Slide Time: 12:45)

Example Code Sequence forZ=X+Y

« Stack maching: &
LIS iy
PLI%E ¥
AL
POP 2

+« The ADD instruction pops two
glements from stack, adds
them, and pushes back result.

AFEIL O 5 N HEREL pyLTY oF
LEEF T PE- M H LRl 'qu‘ TR LY Rl 4as,

Now, let us see some example code sequence for executing some sample instruction that
is Z = X + Y, using the various instruction set architectures that I have told in the
previous slide. So, let us consider this stack-based machine. First we have to push X,
next we have to push Y, and then both of these are now in top two position of the stack.
When we perform this ADD, these two values are taken out, added and stored back in the
top of the stack. And finally, when we do pop, then the value from top of the stack is
taken out and stored back in Z. So, let me explain here in this way. So, by PUSH X, X is
added here; by PUSH Y, Y is added here. And then once we perform ADD, X + Y is
added and stored back here. And then when we perform POP Z, then Z is a memory

location where we will get the result.

(Refer Slide Time: 14:52)

LOAD X #f AEC = MamiX] l
ADD Y #f BECC = BCE + Mami(Y]
§TORE I #f Wam[E] = ALE ALL
« Al Instructions assume that one of the
aperands (and alio the radult) idin &

special register called accumulator, Fraem
1 Lal=1a0

WL S ARl FTETUTY O
EBETRE M bl il T HMCRLE. Y Blic . #hi,

Next, see an accumulator-based system. In an accumulator-based system, if you have to
perform the same operation Z = X + Y, then what you have to do? Both X and Y are
some values in stored in memory, so you have to load X in accumulator. Then ADD Y
will actually add the content of location Y with accumulator and store back the result in
accumulator. So, we can see in the ALU one value is coming from the accumulator and
another is coming from memory; we are adding these two values and we are storing back
the result in accumulator. So, all instructions assume that one of the operands and also

the result is in a special register called accumulator.

(Refer Slide Time: 16:06)

I:'u|1lr-1

LOAD RN B2 = MamiX]
ADD RZY J/F A2 = A2+ BMem|¥]
STORE Em2 Jf Mem[E] = i3
= Oneof the operands ls assumed to be In
register and anather in meamary

-
-

From
g Legt=1a"s

AL FTPEUTY (8

T HARCRCELY Rlil . Wi,

Next we see register-memory machine. In register-memory machine how this can be
performed? LOAD R2,X --- from location X the data will be loaded in R2. When we do
ADD R2,Y --- in R2 the content of R2 which was nothing but X will be added with Y

and stored back in R2. Finally, we have to store this result R2 in Z.

So, here one of the operands is assumed to be in register and another in memory. So, that
is why in the ALU one of the operand is your register. So, one value is coming from
register, another is coming from memory and then finally, the result is getting stored here

in some register, and finally, the STORE will store back the result in Z memory location.

(Refer Slide Time: 17:34)

Ragistars | |

LOAD ALK 4 A1 = Memix]

LOAD RZY {f A3 = Bam|¥]

ADD RIMLAZ FFIE = AL+ 02 . I, .

STORE I.RA fi Mam|I] = R3 I

= Aliocalled fogd-store architecture, 8i

onby LOAD and STORE Instructions can
ACCRSS MEMory.

W

ALLS

WL Ce son K MEEEL FREUTE O
LRFTRE M L adhah RE G T HACRLELT Rl b, S,

Now, we see register-register machine. So, in register-register machine what you need to
do is that you have to load everything into some register first. So, here instead of doing
ADD operation or any kind of operation if you want to perform, you have to perform
only on registers and not on any memory location; that is why in register-register
machine you have to first load all the values of the locations memory location into some
register. That is why we are using two back-to-back LOAD. In the first LOAD, value of
X will be loaded in R1, and in next the value of Y will be loaded in R2. Now we can add
these two registers and store the value in R3. Now, finally, we have to store the result in
Z. This kind of architecture is also called load-store architecture. By load-store
architecture we mean that only these two instructions LOAD and STORE will be used to

access the memory, and no other instructions will be used to access the memory.

(Refer Slide Time: 19:11)

Earlier we have seen that using instruction like ADD R1,A, --- where A is a memory
location. In this instruction, we are allowing one register operand and one memory
operand; but in LOAD/STORE architecture what will happen, you cannot access this.
So, what you have to do, you have to load A using LOAD R1,A. But you cannot do ADD
R1,A in LOAD/STORE architecture. You can only use load and store to access memory.

(Refer Slide Time: 20:41)

About General Purpose Registers (GPRs)

8 Qildar architectings sd & SrEF AW G of dpedcial pisf pode FEgATErE

= FTOgram OOl SLETE [D, AN Cis § @I SR TRAg Tl AR, DT | 3 B0, 31,

2 Navedi aRCRleCTWPeE, 1A COATFEET, REvE & | ETEF ALFDEr of GFE3

= Lawwbarihs piler to- awslgn womss variables to regivier
Hegiskors daro much laidar Ehan ma ry
D QDT el 1P DO (a0 e Dot Pl s Dol D08 o D ke @00 T i1 B b AR S

= Many procssacr have 13 ar Py

HAEEFLNL FTLTE OF
Th HABCRLELT Blil il i,

Let us see about the general-purpose registers. If you recall, older architectures have

large number of special-purpose register like we talked about program counter, stack

pointer, some index register, flag registers, accumulator, etc. But in newer architectures
we have more number of general-purpose registers. And instead of using special purpose
registers, most of the operations are performed using general purpose registers. And why
that is so? The compiler can assign some variables to registers. So, there are so many
variables that can be used and they can be assigned it to registers, and registers are much
faster than memory. So, once you load the data into the registers and you are performing
operation within the register it will be much faster. But first you have to load the data
from your memory to register and then only you can perform the operation within

register.

More compact instruction encoding is possible as fewer bits are required to specify
register. So, the instruction encoding can be much less why they are saying like see you
are bringing everything into registers and the registers cannot be unlimited as compared
to the memory addresses. Memory addresses a 32-bit memory addresses will have 32-
bit, but if you have 40 register or 100 registers how many bits do you require? For 100
register you will require a maximum of 7-bits to encode. So, many processors have 32 or

more general purpose registers.

(Refer Slide Time: 22:42)

COMPARISON BETWEEN VARIOUS
ARCHITECTURE TYPES

AFFIL ORI HAEEFREL FTHTRTE OF
LT RE MG H L b T HRCRCRLT alic il i,

Now, coming to comparison between various architectural types. I have discussed about
many machines: stack based, accumulator based, register-register memory. Now, let us

do a comparison and figure out that which one is better than the other.

(Refer Slide Time: 23:07)

(a) Stack Architecture S il YR E e

* Ty lokl A CrBEniong Fikm A
T POE o FiEH B

O SUBR UL [W

RALIL
LI
SR

AFTIL CFLE
LR TRE M b i idfhah

Firstly, we will do that with the example. So, we will be executing this particular
instruction. This particular instruction will be executed and we will see that with various
architectures how many steps it takes to execute. This particular instruction for stack
based what you have to do. So, these are all memory location data. So, what we need to
do. So, we have to first PUSH A, because we need to put this value into stack, and then
only we can perform the operation. Then we have to PUSH B, then we can specify the
operation DIV that will perform that particular operation and store back in the stack.
Next we will do PUSH A, PUSH C and PUSH B. We have pushed first A, then B, then C
then B why we have done so? Just see we have performed this operation now we have to
perform this operation. For doing this operation we will first perform C * B and then A

that is why we have first put A and then we have put C and B.

(Refer Slide Time: 24:39)

(a) Stack Architecture e e S e
a Typiokl Satrsction FREH A
5 N POP X i I
0 SUR ML DR

AFTIL LR

LRI RE M H L

Now, when we do the next operation MUL then what will happen B and C will be
multiplied and it will be stored back.

(Refer Slide Time: 24:54)

(a) Stack Architecture et A w
* Typickl matrections FiEs A
PLSE X POR X FEH B
£F SUE ML, [

And now if we do a SUB then A - B into C will happen. So, we have performed this part,
we have already performed this part earlier which is stored in the stack. Now, if you just

perform a SUB again then what will happen A/ B — (A - B * C) will take place.

(Refer Slide Time: 25:15)

(a) Stack Architecture P e S
= Typickl matrections P A
i X, POF X FEH B
T SUER MIUL, [

So, now in my stack we have A/ B — (A - B * C), but finally we have to store this into a
memory location Y. So, we are storing this into Y by doing a POP. So, POP will take out

the result from top of the stack and put the result into Y.

(Refer Slide Time: 25:33)

(a) Stack Architecture e e

FusH &

& Typlosl matrisctiong
PUSH X, POR X
SUB. ML [

FEE B

So, how many steps basically we took to execute this? We took 10 steps.

(Refer Slide Time: 25:55)

(b} Accumulator Architecture Example; Ye & /B -[h- C* B
LLB&L) |
MUL B
RILEEE Lk

& Typicsl MEtrecrions
LOAD X, STOHRE X

ADD % SURL K BUL X DY X LMD &

1l
CEHEE | ¥ A-C%R
L&D A

Ny i

LTORE Y

Next we see accumulator architecture. In an accumulator architecture the typical
instructions that we will be using is LOAD, STORE and of course, along with that we
can use other memory operation along with ADD. So, first we LOAD C then we MUL B,
so B is multiplied with C and stored in the accumulator, but we have to store back the
result somewhere because later we will be again using it. So, we store the result in D.
Then we LOAD A again then we SUB D and we STORE D. So, the operation A - C * B
is performed and it is stored in D. Now, finally, what we have to do we have to perform

this and we have to subtract this from this.

So, then again we LOAD A and DIV B; this will make A / B and it is stored in
accumulator and then we do SUB D. So, whatever is in D will be subtracted from
whatever was in accumulated. So, what was in accumulator was A / B, and then it gets
subtracted and finally, we store the result in Y. So, whatever was in accumulator is the
result of this we store back in Y. And now let us see how many steps we require to

execute this. We require 10 steps.

(Refer Slide Time: 27:47)

(c) Memory-Memory Architecture tomple: Yo b /B=(4- C* B

Ly L
ALl y
Tyipica| s g rriacniong | 3 opdrands) hALIL E.LC.E
YH EaLE
AL KT 4
e WAH YL
BL TV
¥ A
Iypica| sibrstRiong | £ oparands '1.
AT XY ! -

RFFIL ORI
LEF T RE. M L idlhah

Let us see memory-memory architecture. The programs using both three-address and

two-address instructions are shown..

(Refer Slide Time: 28:47)

A%

Div D AR

(Refer Slide Time: 32:37)

(d} Load-5tore Architecture Evamphe; Ye b JB-[A- C"H)
L&D A1 A

= Typichl AEFBEnIa R
AL RLX
Lroft v [y Rl RLET

ML RS ARTRD

HbEH HI KL HI
AL &1 R3 Rl “H = HE K
O] B A R

SEOELE Y HE

AFFIL DL
1

FE MG H LD Al

Next is load-store. In load-store instruction as I said the instruction that will is required
to access the memory is LOAD and STORE. So, first of all we have three operands A, B
and C --- we will load that into three different registers R1, R2 and R3. Finally, we do
DIV where we divide A by B and we store it in R4; then we do MUL B and C, that is R2
and R3 store it in R5. Then we sub R1 minus R5 and store the result back in R5. So, we
got this one. We continue this way where the number of instructions required is much

less.

(Refer Slide Time: 34:36)

Registers: Pros and Cons

* The load-itore architecture forms the basis of RISC 154,
= W gmal explore ome guch RISC 154, vz, MIPS
= Halpdin r-l;'-l,‘lul;l.ﬁ!.: mMermory traflic once tha memory dats are
loaded into thi FREIEDErS.

* Compiller can generate very efficient code.
+ sdditional cverhead for save/nestore during procedure or
interrupt calls and returns

PlErry regfeds b dave dnd redtors

L S WP AL FTIEUTE (0
LEFFEAG H LD iah ThHABCRLET Bl $hi,

So, what are the pros and cons that we see. The load store architecture forms the basis of
RISC (reduced instruction set computer) instruction set architecture. And in this course
we shall explore one such RISC ISA, that is MIPS. What it does it helps in reducing the
memory traffic once the memory data are loaded into registers. As you have seen that if
only load and store instructions are used to access memory then we can load the data in a
go using number of load operations and then we perform all the operations within the
processor. So, the processor will be performing all the operations with some register
values because we have already loaded those data from your memory into the register.
And then finally, if we have to store again back from register to some memory location

we can do that.

So, compiler once knows this can of course can generate very efficient code and
additional overhead for save and restore during procedure or interrupt calls and return
will be clear because now we have many registers to save and restore. But again save and
restore will be much more it would not be so much like; what I wanted to say is that it is
of course, an additional overhead for saving and restoring during procedure call because
we have to save the data and store. But this can be done in an efficient way if we can
store it in some other registers as well but although this is an overhead that we see. So,

these are the pros and cons of registers.

So, by this we came to the end of lecture 5 and we also came to the end of Week 1
lecture. So, to summarize what we have studied in week 1 --- we started with how
computers have evolved, then we have seen that how an instruction can get executed. So,
to execute an instruction, we perform set of steps; instructions and data are stored in
memory; to execute it we have to bring it from memory to processors, execute it and
store it back. We have also seen that what kind of software are existing like application
software and system software. We have also seen that both von-Neumann architecture
and Harvard architecture are required. And in the last lecture, we have seen that how this
instruction set architecture has evolved, what kind of machines were used in early stages,
accumulator based machine then stack based machine, then finally, how we are now in a
stage where we perform some kind of operation faster. So, our thrust is how we can

execute programs faster.

So, in this course, in the next lecture, we will be seeing that how these concepts can be

further used to enhance the speed of a computer.

Thank you.

