
Computer Architecture and Organization
Prof. Kamalika Datta

Department of Computer Science and Engineering
National Institute of Technology, Meghalaya

Lecture - 05
Instruction Set Architecture

Welcome to the fifth lecture, that is, instruction set architecture. Here we are looking into

a computer system from programmer’s point of view; like the assembly programmer --

what as an assembly programmer will have the view of the computer system.

(Refer Slide Time: 00:47)

Instruction set architecture serves as an interface between the software and the hardware.

Here by hardware we mean the processor system, like we need to know what all registers

we have and what kind of features are supported by those registers. Typically consists of

information regarding programmer’s view of the architectures, that is, the registers,

address and data buses, etc. and it also consists of the instruction set. Now, many

instruction set architectures are not specific to a particular computer architecture and

they survive across generations; like if you see Intel X86 series, across generations it has

got no change.

(Refer Slide Time: 02:16)

Now, let us see what are the important instruction set design issues that should be taken

into consideration. First is number of explicit operands. By operands, what do we mean?

(Refer Slide Time: 02:34)

Let us say we have an instruction ADD. We can have several instruction variations, like

ADD R1; ADD R1, R2; ADD R1, R2, R3. By number of explicit operands here we have

a single operand, two operands, and three operands specified in the instructions. And if

we do not specify any operand, then we implicitly take some operands for this operation.

We will also see that. So, there can be zero address instruction, there can be one address

instruction, there can be two address instruction, or there can be three address

instruction.

Let us now see the location of the operands. By location of operand what do we mean is:

ADD R1,LOCA -- R1 is a processor register, so this is within processor; LOCA is a

location in memory. So, by location of the operands, we mean either it is in a register or

it is in accumulator or it is in memory. We will see what is an accumulator in course of

time. We have to specify to the computer that the first operand is a register, and so you

have to look into a register to get the value. This operand will be a register address where

you have to go and see the value.

Now, in LOCA you have to specify that this is a memory location and you have to go to

that memory location to access this value. So, addressing mode is the way to specify the

operands in your instruction. There can be various addressing modes like register,

immediate, indirect, relative, etc, we will see in detail later.

Now, we talk about the size of the operands supported. It can be a byte, it can be half-

word, it can be a word, it can be a double, etc. By supported operation we mean that how

many operations we can specify specify and what are the various types. When I say

ADD, MUL, SUB, these are all arithmetic operations. I can also tell you some other

operations like MOVE -- these are data transfer operation, LOAD/STORE are also data

transfer operations. And there can be many other kinds of operation that we will see, but

by supported operation we mean that how many kinds of operation you are supporting in

your architecture.

(Refer Slide Time: 07:25)

Now, this actually shows the evolution of instruction set. Initially in 1960s we were

having accumulator based systems. By accumulator-based system let me tell what it is.

(Refer Slide Time: 07:50)

When I write ADD R1; by this R1 will be added with what? R1 will be added with a

register present in your processor called accumulator. So, accumulator is a register

which if we have an instruction like ADD R1; by default, the value of R1 is added with

accumulator and the result is stored back in accumulator itself.

During 1960s to 70s another kind of instruction set emerged that is stack based. What do

you mean by stack based? In stack-based architecture, a portion of memory called stack

is made available. Data on the top of the stack can be accessed. If you just say ADD, and

do not specify any operand here, then by default the first two elements of the stack will

be taken out, that is 5 and 10, will be added and stored back here; so this becomes 15. By

this what we mean is that we are doing some operation where we are loading the data,

we are storing the data in the stack, and then we are performing the operation where we

need not have to specify any operand --- by default the operands are taken from the

stack. So, here it is a 0-address instruction.

Next comes memory-memory based instructions in 70s and 80s, and the representative

system is IBM 360 which has both two-address and three-address instructions. ADD A,B

--- where the data from memory location A is added with data from memory location B

and the result is stored back in A. Now, we also have register-memory based systems

where one operand will be a register and one operand will be a memory location. So,

LOAD R1,X. What do you mean by that? Load from memory location pointed by X into

R1. Similarly, we can also have STORE, store the value of R3 into some other location.

And finally, we have three-address instructions where we are specifying three addresses

and what does it do? Here R1 stores the value of R2 and R3, the result of the addition is

stored in R1. So, in a single step, we can do this.

(Refer Slide Time: 12:45)

Now, let us see some example code sequence for executing some sample instruction that

is Z = X + Y, using the various instruction set architectures that I have told in the

previous slide. So, let us consider this stack-based machine. First we have to push X,

next we have to push Y, and then both of these are now in top two position of the stack.

When we perform this ADD, these two values are taken out, added and stored back in the

top of the stack. And finally, when we do pop, then the value from top of the stack is

taken out and stored back in Z. So, let me explain here in this way. So, by PUSH X, X is

added here; by PUSH Y, Y is added here. And then once we perform ADD, X + Y is

added and stored back here. And then when we perform POP Z, then Z is a memory

location where we will get the result.

(Refer Slide Time: 14:52)

Next, see an accumulator-based system. In an accumulator-based system, if you have to

perform the same operation Z = X + Y, then what you have to do? Both X and Y are

some values in stored in memory, so you have to load X in accumulator. Then ADD Y

will actually add the content of location Y with accumulator and store back the result in

accumulator. So, we can see in the ALU one value is coming from the accumulator and

another is coming from memory; we are adding these two values and we are storing back

the result in accumulator. So, all instructions assume that one of the operands and also

the result is in a special register called accumulator.

(Refer Slide Time: 16:06)

Next we see register-memory machine. In register-memory machine how this can be

performed? LOAD R2,X --- from location X the data will be loaded in R2. When we do

ADD R2,Y --- in R2 the content of R2 which was nothing but X will be added with Y

and stored back in R2. Finally, we have to store this result R2 in Z.

So, here one of the operands is assumed to be in register and another in memory. So, that

is why in the ALU one of the operand is your register. So, one value is coming from

register, another is coming from memory and then finally, the result is getting stored here

in some register, and finally, the STORE will store back the result in Z memory location.

(Refer Slide Time: 17:34)

Now, we see register-register machine. So, in register-register machine what you need to

do is that you have to load everything into some register first. So, here instead of doing

ADD operation or any kind of operation if you want to perform, you have to perform

only on registers and not on any memory location; that is why in register-register

machine you have to first load all the values of the locations memory location into some

register. That is why we are using two back-to-back LOAD. In the first LOAD, value of

X will be loaded in R1, and in next the value of Y will be loaded in R2. Now we can add

these two registers and store the value in R3. Now, finally, we have to store the result in

Z. This kind of architecture is also called load-store architecture. By load-store

architecture we mean that only these two instructions LOAD and STORE will be used to

access the memory, and no other instructions will be used to access the memory.

(Refer Slide Time: 19:11)

Earlier we have seen that using instruction like ADD R1,A, --- where A is a memory

location. In this instruction, we are allowing one register operand and one memory

operand; but in LOAD/STORE architecture what will happen, you cannot access this.

So, what you have to do, you have to load A using LOAD R1,A. But you cannot do ADD

R1,A in LOAD/STORE architecture. You can only use load and store to access memory.

(Refer Slide Time: 20:41)

Let us see about the general-purpose registers. If you recall, older architectures have

large number of special-purpose register like we talked about program counter, stack

pointer, some index register, flag registers, accumulator, etc. But in newer architectures

we have more number of general-purpose registers. And instead of using special purpose

registers, most of the operations are performed using general purpose registers. And why

that is so? The compiler can assign some variables to registers. So, there are so many

variables that can be used and they can be assigned it to registers, and registers are much

faster than memory. So, once you load the data into the registers and you are performing

operation within the register it will be much faster. But first you have to load the data

from your memory to register and then only you can perform the operation within

register.

More compact instruction encoding is possible as fewer bits are required to specify

register. So, the instruction encoding can be much less why they are saying like see you

are bringing everything into registers and the registers cannot be unlimited as compared

to the memory addresses. Memory addresses a 32-bit memory addresses will have 32-

bit, but if you have 40 register or 100 registers how many bits do you require? For 100

register you will require a maximum of 7-bits to encode. So, many processors have 32 or

more general purpose registers.

(Refer Slide Time: 22:42)

Now, coming to comparison between various architectural types. I have discussed about

many machines: stack based, accumulator based, register-register memory. Now, let us

do a comparison and figure out that which one is better than the other.

(Refer Slide Time: 23:07)

Firstly, we will do that with the example. So, we will be executing this particular

instruction. This particular instruction will be executed and we will see that with various

architectures how many steps it takes to execute. This particular instruction for stack

based what you have to do. So, these are all memory location data. So, what we need to

do. So, we have to first PUSH A, because we need to put this value into stack, and then

only we can perform the operation. Then we have to PUSH B, then we can specify the

operation DIV that will perform that particular operation and store back in the stack.

Next we will do PUSH A, PUSH C and PUSH B. We have pushed first A, then B, then C

then B why we have done so? Just see we have performed this operation now we have to

perform this operation. For doing this operation we will first perform C * B and then A

that is why we have first put A and then we have put C and B.

(Refer Slide Time: 24:39)

Now, when we do the next operation MUL then what will happen B and C will be

multiplied and it will be stored back.

(Refer Slide Time: 24:54)

And now if we do a SUB then A - B into C will happen. So, we have performed this part,

we have already performed this part earlier which is stored in the stack. Now, if you just

perform a SUB again then what will happen A / B – (A - B * C) will take place.

(Refer Slide Time: 25:15)

So, now in my stack we have A / B – (A - B * C), but finally we have to store this into a

memory location Y. So, we are storing this into Y by doing a POP. So, POP will take out

the result from top of the stack and put the result into Y.

(Refer Slide Time: 25:33)

So, how many steps basically we took to execute this? We took 10 steps.

(Refer Slide Time: 25:55)

Next we see accumulator architecture. In an accumulator architecture the typical

instructions that we will be using is LOAD, STORE and of course, along with that we

can use other memory operation along with ADD. So, first we LOAD C then we MUL B,

so B is multiplied with C and stored in the accumulator, but we have to store back the

result somewhere because later we will be again using it. So, we store the result in D.

Then we LOAD A again then we SUB D and we STORE D. So, the operation A - C * B

is performed and it is stored in D. Now, finally, what we have to do we have to perform

this and we have to subtract this from this.

So, then again we LOAD A and DIV B; this will make A / B and it is stored in

accumulator and then we do SUB D. So, whatever is in D will be subtracted from

whatever was in accumulated. So, what was in accumulator was A / B, and then it gets

subtracted and finally, we store the result in Y. So, whatever was in accumulator is the

result of this we store back in Y. And now let us see how many steps we require to

execute this. We require 10 steps.

(Refer Slide Time: 27:47)

Let us see memory-memory architecture. The programs using both three-address and

two-address instructions are shown..

(Refer Slide Time: 28:47)

 (Refer Slide Time: 32:37)

Next is load-store. In load-store instruction as I said the instruction that will is required

to access the memory is LOAD and STORE. So, first of all we have three operands A, B

and C --- we will load that into three different registers R1, R2 and R3. Finally, we do

DIV where we divide A by B and we store it in R4; then we do MUL B and C, that is R2

and R3 store it in R5. Then we sub R1 minus R5 and store the result back in R5. So, we

got this one. We continue this way where the number of instructions required is much

less.

(Refer Slide Time: 34:36)

So, what are the pros and cons that we see. The load store architecture forms the basis of

RISC (reduced instruction set computer) instruction set architecture. And in this course

we shall explore one such RISC ISA, that is MIPS. What it does it helps in reducing the

memory traffic once the memory data are loaded into registers. As you have seen that if

only load and store instructions are used to access memory then we can load the data in a

go using number of load operations and then we perform all the operations within the

processor. So, the processor will be performing all the operations with some register

values because we have already loaded those data from your memory into the register.

And then finally, if we have to store again back from register to some memory location

we can do that.

So, compiler once knows this can of course can generate very efficient code and

additional overhead for save and restore during procedure or interrupt calls and return

will be clear because now we have many registers to save and restore. But again save and

restore will be much more it would not be so much like; what I wanted to say is that it is

of course, an additional overhead for saving and restoring during procedure call because

we have to save the data and store. But this can be done in an efficient way if we can

store it in some other registers as well but although this is an overhead that we see. So,

these are the pros and cons of registers.

So, by this we came to the end of lecture 5 and we also came to the end of Week 1

lecture. So, to summarize what we have studied in week 1 --- we started with how

computers have evolved, then we have seen that how an instruction can get executed. So,

to execute an instruction, we perform set of steps; instructions and data are stored in

memory; to execute it we have to bring it from memory to processors, execute it and

store it back. We have also seen that what kind of software are existing like application

software and system software. We have also seen that both von-Neumann architecture

and Harvard architecture are required. And in the last lecture, we have seen that how this

instruction set architecture has evolved, what kind of machines were used in early stages,

accumulator based machine then stack based machine, then finally, how we are now in a

stage where we perform some kind of operation faster. So, our thrust is how we can

execute programs faster.

So, in this course, in the next lecture, we will be seeing that how these concepts can be

further used to enhance the speed of a computer.

Thank you.

