
Computer Architecture and Organization
Prof. Indranil Sengupta

Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur

Lecture - 47
Interrupt Handling (Part II)

We continue with our discussion on Interrupt Handling. In this lecture, we shall first be

looking at some issues that occur whenever multiple devices are allowed to send

interrupt signals to the processor. So, this is the Part II of Interrupt Handling.

(Refer Slide Time: 00:40)

We start with this problem of handling multiple devices. We have already talked about

this earlier in our last lecture, but there are something else we shall be discussing here.

Here we assume because there are multiple devices a number of devices can potentially

generate interrupts to the CPU. Now, there are four questions we need to answer. We

need to have solutions to all four of these. Some of these we have already answered

earlier. First is how can the CPU identifies the interrupting device? Well, earlier we

suggested one method that is using the interrupt vector concept. The interrupting device

itself can send an interrupt vector through which the CPU can identify who has

interrupted.

This is the way in which the device itself is identifying that well I have interrupted. So,

CPU can know that.

The second important question is how can the CPU obtain the starting address of the

ISR? Once the CPU has identified the device, this is easy because the address of the ISR

can be stored in a table. After knowing which device has interrupted, the CPU can

consult the table, get the address and can jump to that appropriate address.

The third question is should we allow interrupt nesting to happen because we saw earlier

that interrupt nesting can create some problems, or we should be disabling the interrupts

while interrupts have been processed? And lastly, for simultaneous interrupt requests,

how we should handle them?

(Refer Slide Time: 02:49)

Let us look at these one by one. First device identification. This has already been talked

about earlier. The first thing is that there are several external devices which may be

having different interrupt signals INTR1, INTR2 up to INTRn. So, if anyone of them

generates an interrupt, you can make a logical connection and you can generate the

consolidated interrupt request which will be sent to the CPU. So, CPU will get

interrupted.

(Refer Slide Time: 03:36)

Now, in addition each device can have a status bit indicating whether it has interrupted.

What we are saying is something like this. Let us say we have the different devices

device1, device2 and devicen. Let us say there is a port, an input port, where each of the

device can set one of the bits.

Now, what these bits will indicate? These will indicate whether interrupted or not. Let us

say device 2 has interrupted. So, device 2 will be setting this particular bit to 1, and all

other bits will remain 0. So, what the CPU will do? CPU can read this word and can

check bits one by one which of them is 1. It can identify which of the bits is 1. This

process is sometimes called polling. Polling means scanning one by one to find out

which device has sent the interrupt.

This is exactly what is mentioned here in the slide. Each device can have a status bit

indicating whether it has interrupted, and CPU can go on polling those bits one by one to

find out that which device had interrupted. A better alternative will be to use interrupt

vector concept that we talked about earlier, because when the CPU is doing polling,

some additional time will be required because there will be program which will be

running which will be shifting the bits one by one and will be checking which bit is 1,

which bit is 0. That will take some time, but if the device itself sends an identifying code,

the interrupt vector on the data bus, CPU can immediately read that and directly find out

which device has interrupted. There is no need of any polling. So, this is a better

alternative.

(Refer Slide Time: 06:18)

The second question is to find starting address of ISR. Here there can be multiple ways.

There can be processors where multiple interrupt requests pins are there. This you would

see mostly in some older processors, but in most of the modern processors, you do not

see many. You will see that there was multiple interrupt input lines and each of these

input interrupt request lines was associated with a particular address of ISR, which

means that if an interrupt comes over this line 1, it will jump to a particular address. If an

interrupt comes on line 2, it will jump to another particular address.

So, when you write your ISR, you will have to write those ISRs in those particular

addresses. This was one of the concepts which was used in some of the processors. For

multiple interrupt request lines the address of the ISR can be fixed for each individual

input by hardware. If an interrupt comes on a particular line, the control will jump to a

particular address. So, ISR will have to be loaded there, but this method lacks flexibility

because if there are four interrupt inputs, you can have only four ISRs, but in general the

number of devices you are interfacing can be more than four also. So, flexibility is less in

this approach.

Again if you use the interrupt vectors scheme, this is much more flexible. There can be

many devices which are connected to the CPU. Whoever has interrupted will send the

corresponding interrupt vector on the data bus. So, there is no restriction as to how many

devices can be connected. It can be 2, 5, 10, or 100. The interrupting device will have the

responsibility of sending the interrupt vector on the data bus, and CPU can read it and

uniquely identify the device who has sent the interrupt.

Once the CPU has identified the device, there can be a look up table where all the ISR

addresses will be stored. The CPU can do a look up in that table and find out the

corresponding ISR address, and then it will be jumping to the corresponding ISR. The

only difficulty here is that you need to do some processing, searching a table and so on.

So, a little more time is required for interrupt handling. This we are calling as the

interrupt latency; the delay between an interrupt request signal is arriving and when the

interrupt acknowledge is finally going out. This delay will be increased a little bit

because here you need to do a little more processing to find out the address of the ISR.

(Refer Slide Time: 09:44)

Here we are not immediately jumping to the ISR. We are searching for the address first

and then jump. Now, regarding interrupt nesting, we told earlier that we can have a

simple approach of disabling all interrupts while the execution of an ISR is going on.

This is of course simple. This will ensure that whenever an interrupt comes, there will

not be any more interruptions. The ISR will be executing to completion, it will come

back, and then if another interrupt comes, there will be another interruption.

There will be at most one interruption per interrupt request, but the point to note is that

for most of the devices, the ISRs are typically very short. Just transfer a few bytes or

words of data that is the task of the ISR. So, the total time taken for the ISR to finish or

execute is typically very small. So, you can afford to use this approach that you can

disable the interrupt because you know that ISR will be finished very quickly even if you

have disabled. So, after finishing the interrupt can be handled which, has come after that.

So, this will not be that much of a problem.

A better method may be to use interrupt priority, with some interrupting devices assigned

higher priority than the others. The idea is that here you are not ruling away interrupt

nesting all together. Here you are saying that you are allowed to do interrupt nesting, but

only higher priority interrupts can interrupt the ISR of a lower priority interrupt. Suppose

there is a timer which is generating an interrupt every 1 millisecond, which you are using

to maintain a real time clock which is very accurate.

You cannot afford to delay this timer interrupt because this real time clock is a very

important thing. Many subsystems of your computer may be using this real time clock

for various purposes. When this real time clock interrupt comes, if the CPU sees some

other ISR is currently being executed, it will interrupt that because this real time clock

interrupt is a very high priority interrupt. A high priority interrupt can interrupt the ISR

of lower priority devices or interrupts. This is the concept.

(Refer Slide Time: 12:54)

By using interrupt priority, you can have an arrangement where high priority interrupts

can interrupt the ISR of lower priority ones. Lastly comes simultaneous requests. Here

we are assuming that simultaneous interrupt requests can arrive from two or more

devices. Obviously CPU should have some mechanism to resolve that.

The first approach can be a simple priority scheme which we talked about earlier using a

interrupt priority controller. Conceptually there is a CPU, there can be multiple devices;

so each of them having a request and an acknowledgement line.

If more than one requests are coming together, the device or the interrupt input that has

the higher priority will be acknowledged, while the others will be temporarily ignored. It

will be handled later. Here we are assuming, INTRi will be having higher priority than

INTRj, if i < j. So, INTR1 will be having higher priority than INTR2, INTR2 will be

having higher priority than INTR3 and so on.

(Refer Slide Time: 14:19)

There is another way to assign priority. Instead of fixed fixing, there is another way in

which this priority is implemented in practice. This is a method called daisy chaining.

The idea of this daisy chaining, we will be explaining with an example. The concept is

fairly simple. In the method of polling you are checking the devices one by one. Now,

there you can regard that priority of the devices are automatically assigned based on the

order in which you are checking or you are polling.

Suppose there are 8 devices and you are checking the status of the devices one by one.

Now, the order in which you are checking the devices that will determine the priority; the

first device that you are checking well, of course we checked first. If it has interrupted, it

will be handled first. So, it is having the higher priority. So, if the first device has not

interrupted, then only you are going to the next that is having a lower priority. So, the

order in which you are checking that implicitly defines the priority.

For daisy chain connection, the interrupt request line is common to all the devices, but

the interrupt acknowledge line is connected in a particular fashion. We will be showing

this. This is called a daisy chain which propagates serially through the device.

(Refer Slide Time: 16:08)

All the devices having the interrupt request are all connected together. Any device

interrupting will be generating an INTR, but INTA is not connected directly to all the

devices. INTA is connecting to device 1, device 1 is generating an INTA signal to device

2, device 2 is generating an INTA signal to device 3, and so on.

Now, the way it happens is like this. After an interrupt is generated, this interrupt could

have come from any of the devices. The CPU generates an acknowledgement and it first

comes to device 1. If device 1 had interrupted, then it will send the interrupt vector on

the data bus and it will stop this INTA from propagating any further, but if device 1 had

not interrupted, and then it will allow this INTA to go forward to device 2. Device 2 will

do the same thing. It will check whether it has interrupted or not. If yes, then it will put

the interrupt vector on the data bus and if not, it will allow INTA to propagate to the next

device and so on.

The order in which the device is connected will define the priority. The device which is

nearest to the CPU will be having the highest priority, and the device farthest will be

having the lowest priority. So, a device when it receives INTA, passes the signal to the

next device only if it had not interrupted. Else if it had interrupted, it will stop the

propagation of INTA and will put the interrupt vector or the identifying code on the data

bus.

So, as I had said the device that is electrically closest to the CPU will have the highest

priority. This is how daisy chain works.

(Refer Slide Time: 18:29)

Now, let us look at the different types of interrupt. This diagram shows you the different

types. Broadly speaking you can classify interrupts as hardware interrupt and software

interrupt. Well, the name comes from the source. Hardware interrupt is something which

is generated by the hardware, and software interrupt is something which is generated

because of the execution of an instruction.

That is why it is called a software interrupt and hardware interrupt again in turn can be

either maskable or non-maskable, and under software interrupt, you can make a

categorization, you can have something called trap or you can have something called

exception. Let us look at these nomenclatures what these are actually.

(Refer Slide Time: 19:27)

Coming to hardware interrupt the interrupt signal is generated by the hardware. It is

coming from a device which is external to the CPU from some hardware unit. It is

coming from memory, coming from IO device; some examples are keyboard interrupt,

timer interrupt, etc. Suppose I am maintaining the time of the day, the tick is coming

every millisecond. So, whenever a tick comes, you increment the value of the clock.

These are examples of hardware interrupt.

Now, maskable interrupt means well you are allowed to mask some of the interrupts.

Mask means temporarily stop the handling of those interrupts. This means masking. That

means, you are allowed to delay the handling or the processing of the interrupts. These

kind of interrupts are called maskable interrupts.

The hardware interrupts that can be masked or delayed when a higher priority interrupt

request arrives are called maskable interrupts. Suppose there are multiple interrupts. You

are handling one of them. If a higher priority interrupt comes and you can afford to delay

the current interrupt which has been handled, then we say that it is a maskable interrupt.

You are able to mask or pause the handling of that interrupt temporarily.

In systems where this kind of a maskable interrupts are allowed, there are instructions

using which you can mask or unmask the various interrupts.

(Refer Slide Time: 21:30)

Non-mask able interrupt is one where the interrupts cannot be delayed. They should be

handled by the CPU immediately. Some examples are some kind of power fail interrupts.

You detect that the power supply of your computer is failing; the voltage level is going

down. May be there is a power failure. So, if there is an interrupt which comes, now I

may save some of my important data to a non-volatile part of the memory. This is a very

important or high priority interrupt.

Similarly, there can be some real time system interrupts. Real time system interrupt

means some interrupt request is coming and the interrupt request has to be serviced

within well-defined time limit. So, if you are not able to do that, may be your processing

will be wrong or the objective for each of design the system will be lost.

Well, some examples may be medical information system where you are monitoring a

patient in real time depending on some health status. You are taking some corrective

actions. So, if there is something anomalous, you must take some action immediately.

You think of an industrial control plant. You are sensing temperature, pressure, humidity,

so many things. So, if you see that some parameter values has gone beyond the desired

range, you may have to immediately take some corrective action.

Well, for a defense system you see that an enemy aircraft or a missile is heading towards

you, you should immediately start the intercepting mechanism. So, these are some

examples where interrupts have to be handled immediately and we have to use non-

maskable interrupt for such cases. These interrupts cannot be masked or delayed. These

are extremely important.

(Refer Slide Time: 23:45)

Coming to software interrupts, they are caused due to execution of some instructions.

They are not caused by some external hardware. One type is called Trap. They are also

sometimes called system calls. These are nothing but special instructions which are used

to request services from the operating system.

These we studying in more detail in the operating system course, but for the time being

let us assume that a trap or a system call is a kind of an instruction which behaves similar

to an interrupt; so when it is being executed, some instructions are saved and then, you

jump to a routine. That routine gets executed and that may be part of the operating

system. Then, you come back. That is what a trap is.

(Refer Slide Time: 24:45)

The second kind of software interrupt is called exception. Exception is unplanned while

trap is planned. That means you have an instruction and you are executing it. This is the

planned call, but an exception is unplanned. They are generated within the system, but

you do not know when they will come. They might be generated because of something

which is beyond your control or due to some error this has happened. Like you may

encounter due to some error, let say some memory error, some opcode has become

invalid ,and you are trying to decode an instruction and find out that the opcode is not a

valid opcode. So, you may have to interrupt immediately and tell that well there is

something wrong and I have to stop my program.

Again, divide by zero, page fault, invalid memory access. You are trying to access a

memory which you are not supposed to access. It is part of some other program or

process. There is memory protection hardware which will prevent you from accessing

that. If you try to access a memory location which is beyond your allowable limit, then a

interrupt will be automatically generated.

Whenever such a thing happens, you generate something called an exception. These are

also software interrupts. Later on we shall see when we look at the pipeline

implementation of MIPS32 processor ISA, interrupt handling and exception handling is a

real problem and we shall of course also suggest some of the approaches which we can

use to handle interrupts and exceptions in MIPS32 pipeline implementation.

We have come to the end of this lecture, and in the next lecture we shall be continuing

with some other IO transfer techniques, namely direct memory access which we have not

yet discussed following which we shall be discussing some of the commonly used

standards for data transfer, some bus standards and so on.

Thank you.

