
Computer Architecture and Organization
Prof. Indranil Sengupta

Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur

Lecture - 46
Interrupt Handling (Part I)

In our last lecture we were talking about the various IO transfer techniques specifically

under the programmed IO category. If you recall we looked at synchronous method of

data transmission, then you looked at asynchronous or handshaking, and finally we were

discussing the concept of interrupt driven data transfer.

In case of interrupt driven data transfer what you saw was the processor is doing

something, whenever the IO device is ready to transfer some data it will be interrupting

the CPU by sending a interrupt request signal. The CPU when it receives the interrupt

request signal will know that some IO device is now ready to transfer data, so it will be

jumping to some ISR where the data transfer will take place, and after that it will again

return back to the program which it was executing. So, here while the device is getting

ready for transfer, the CPU is able to do something else; CPU is not getting tied up.

(Refer Slide Time: 01:48)

We shall be continuing our discussion on interrupt driven data transfer, in particular the

topic of interrupt handling.

Let us see what exactly happens when an interrupt request reaches the CPU. The first

thing that happens is that the CPU was executing some instruction when the interrupt

request came. We shall be seeing that some exceptions can be there, but typically the

instruction which was being executed will first complete and only after that the interrupt

request will be acknowledged.

So, what we are saying is that at the end of the current instruction execution, during the

interrupt acknowledge cycle the program counter and the program status word or PSW

are saved in a stack. You may recall that for normal subroutine or function call and return

only the return address; that means, the value of the PC is saved in stack, but here we are

saving not only the PC, but also some status information, which depends on the

processor, the ISA.

Typically in computer systems there are status flags. PSW will contain status flags and

some other processor status information regarding which level of privilege it is working

on, and so on and so forth. Now you may recall in MIPS32 processor we do not have any

such status flags. So, saving of the PSW becomes much simpler there.

After this is done the interrupt is acknowledged, which means the interrupt acknowledge

signal is activated and the external interrupting device or the IO module can supply the

interrupt vector. The interrupt vector will identify the device that has interrupted; using

that information you can compute the address of the interrupt service routine and transfer

control to that.

Different devices may be having different service routines. You need to get the address of

the correct service routine and then jump to that. Now after the interrupt handling is

completed the interrupt service routine executes a return, but this is a special kind of a

return instruction not a normal return instruction that you use to return from a subroutine

or a function where only typically the PC is popped from the stack and is loaded into PC.

But here you have to restore not only the value of the PC, but also the program status

word which was also saved. So, this is a special kind of instruction, let us say RTI. This

will restore the PSW and return control to the saved PC address. As I had said this is

slightly different from the normal return instruction where PSW is not saved and

returned, only the PC is restored.

(Refer Slide Time: 05:23)

Now, let us look at an instruction cycle. In MIPS32 you recall the instruction cycle

consist of five steps, IF ID EX MEM and WB. These are typically called machine cycles.

An instruction cycle comprises of typically more than one machine cycles. These

machine cycles are executed in order to complete the execution of an instruction.

When the instruction execution is complete only then interrupts are acknowledged, but in

between the machine cycles interrupts are not acknowledged even if the interrupt may

appear earlier. But the processor will wait till the instruction execution is complete, and

only then the interrupt system will get acknowledged.

Now, in this context you may recall one thing that we talked about the machine cycles

and instruction cycle, and said that interrupts will be acknowledged only at the end of the

instruction cycle not in between, but there is another method of IO transfer which we

have not discussed yet that is direct memory access.

DMA is one method using which the IO device can directly transfer some data to

memory or back without intervention of the CPU. Now here there is slight difference in

terms of the handling of the DMA requests. Whenever a device wants to make such

DMA transfer, we can stop the processor not only at the end of the instruction cycle, but

in between also. At the end of a machine cycle we can stop, at the end of IF we can stop,

at the end of ID or EX or MEM we can stop. This is possible because while the transfer

is going on the CPU status is not changing; it is just like a pause. While the transfer is

going on CPU will pause, and then it will again continue.

(Refer Slide Time: 08:08)

The general interrupt processing can be summarized by this flow diagram. While the

portion marked in blue are performed in the hardware unit in the CPU, while the pink

part are performed by software as part of the interrupt service routine. Let us see what

happens. The device controller to which the IO device is connected issues an interrupt

request. CPU receives that, CPU will finish the execution of the current instruction, and

only after that the CPU will save the PC and the PSW, it is after that it will acknowledge

the interrupt and it will save PSW and PC in the stack.

After acknowledging the interrupt as the CPU will try to know that which device has

interrupted. Here the interrupt vector concept comes in, whenever interrupt acknowledge

is coming the external device controller will be pushing some kind of a interrupt vector

or a device ID on the data bus. CPU can read it and can identify the device.

Now, depending on the device CPU will be jumping to the appropriate interrupt service

routine, which means it will loading the PC with the address of the corresponding ISR.

After this is done control will jump to the ISR; this part is done by the CPU

automatically whenever the interrupt comes, but here when ISR assumes control there is

a program code that is written. It will be saving some other processor information, if

required may be some registers it will be saving, and it will be processing the request, if

it is data transfer it will be actually carrying out the transfer, and whatever registers were

saved will restore them back, and it will return back by restoring the old PSW and PC.

 (Refer Slide Time: 10:58)

Now the point to note is that suppose this was a program which was executing. There are

many instructions and let us say this is my ISR. Now you cannot predict before exactly

where the interrupt will come; may be the interrupt will arrive here, then after the

execution of this instruction you will be jumping to the ISR. It will finish and then it will

return back. May be the interrupt has come here, then after execution of this control will

jump it will get executed and it will be returning here.

(Refer Slide Time: 11:49)

So, it can actually jump from anywhere in the program depending on where the interrupt

request has actually come. This is the picture that shows the CPU, the device controller

and the bus. The device controller will be sending an interrupt request to the CPU, CPU

at the end of the current instruction execution will be sending back an interrupt

acknowledge.

(Refer Slide Time: 12:25)

In response to that, device controller will be pushing an interrupt vector on the data bus.

CPU will be reading that interrupt vector and will be able to identify which device has

interrupted.

 (Refer Slide Time: 12:55)

Now, the question is how is the interrupt vector send to the data bus in response to

INTA? We have said that whenever this INTA signal is coming, the device will be

putting the interrupt vector on the data bus, but how does it happen automatically? It is

very simple. Here actually what we require is the tristate buffer. On the input side of the

tristate buffer we have the interrupt vector, the output of which is connected to the data

bus and the tristate buffer is enabled by the interrupt acknowledgement signal.

(Refer Slide Time: 13:46)

You recall what is a tristate buffer. A tristate buffer is a circuit which has an enable.

Suppose I have an input A and the output B. If this buffer is enabled, then B will be equal

to A, but if it is not enabled then the output will be electrically disconnected or in the

high impedance state. So, this tristate buffer can either connect or disconnect a signal

from a destination point; in this case the destination point is the data bus.

Whenever INTA is active the interrupt vector will appear on the data bus. When it is not

active, tristate buffer will be making the output lines in high impedance state. The

interrupt vector which is pushed on the data bus can be read by the CPU. This will help

the CPU to identify which device had interrupted, and accordingly it can identify the

correct interrupt service routine.

(Refer Slide Time: 15:20)

Now, let us consider the scenario where multiple devices can interrupt the CPU. Let us

look at a scenario like this. Suppose there are several devices connected on this side.

Each of these devices will be having an interrupt request and interrupt acknowledge; let

us say there are 4 such sets.

When there are multiple devices that needs to interrupt the CPU, one common solution is

to have a device which is called a priority interrupt controller. A priority interrupt

controller works exactly like shown in this diagram. On one side it will be having

multiple sets of interrupt request and acknowledge lines through which various device

controllers can be connected, but on this side of the CPU there is a single interrupt line

and a single interrupt acknowledge line. The interrupt controller interacts with CPU on

one side and multiple devices on the other side.

Here the idea is whenever any one of the devices will be sending an interrupt request, the

priority interrupt controller will automatically generate an interrupt request to the CPU,

and when the CPU sends back the acknowledgement the interrupt controller knows that

which device has sent interrupt. Whenever acknowledgment comes, this interrupt

controller will be putting the appropriate interrupt vector on the data bus corresponding

to that interrupting device.

So, interrupt controller is responsible for sending the correct interrupt vector to the CPU,

but just one thing. If suppose two or more interrupt lines are activated simultaneously

then what will happen? Then this priority comes into the picture. Let us say you define a

priority where this line 0 has higher priority than 1, 1 has higher priority than 2, and 2

has higher priority than 3. So, if interrupt request 0 and interrupt request 2 are activated

simultaneously, then this interrupt request 0 will be processed and 2 will be ignored for

the time being.

Later on, after finishing the processing of interrupt request 0, if the interrupt request 2 is

still active it will be processed and handled. This is a typical way using which multiple

interrupts can be handled.

(Refer Slide Time: 18:34)

The interrupt line as I had said is activated when some of the devices activate their

interrupt request line.

(Refer Slide Time: 18:55)

How it can be implemented? You use a simple 4 input OR gate, where the 4 interrupt

request lines are connected to the 4 inputs and the output will be generating the

consolidated interrupt request signal to the CPU. Then the CPU sends back interrupt

acknowledge INTA. When the CPU sends back INTA, the interrupt controller will send

back the corresponding acknowledge to the interrupting device and puts the interrupt

vector on the data bus.

Suppose I have the priority interrupt controller here. Let us suppose device number 2 has

interrupted. In response the CPU got this INTR. Later on when the CPU generates the

acknowledgement, the PIC will be generating the corresponding acknowledgement for

this device 2, INTA 2, this will be done automatically. It also has another responsibility;

it is also connected to the data bus. Whenever this interrupt acknowledge is sent by the

CPU, the corresponding interrupt vector for this particular device will be pushed on the

data bus, so that this CPU can read the value and know which of the devices had actually

interrupted. This is the second step and the third point to note is that the interrupt

controller can be storing the interrupt vectors for the different devices.

The interrupt controller is in some sense programmable, programmable means before

you are using it you can specify that these will be the interrupt vectors for the 4 devices.

The CPU can initialize some internal registers within that PIC, where the values of the

interrupt vectors can be programmed or specified. If more than one requests are activated

simultaneously we can use a priority mechanism.

Let us say by convention interrupt 0 will be having the highest priority followed by

interrupt 1 followed by interrupt 2 and then interrupt 3 .

(Refer Slide Time: 22:14)

Another issue is nesting of interrupts. Let us consider a scenario where a device D0 had

sent an interrupt to the CPU, and the CPU is currently executing the corresponding ISR.

While this ISR is being executed, let us assume that another device D1 has interrupted.

(Refer Slide Time: 22:47)

What I am saying is that some program was executing in between there was an interrupt

from device D0. Because of this interrupt the control had transferred to the ISR

corresponding to device D0. After finishing it is supposed to come back like this and

resume execution.

But what we assuming is that while this ISR D0 was executing there is another interrupt

which has arrived from D1. So, now you may argue that there is also an ISR for device

D1. So, should we stop this go here process this and then come back and resume here.

This is called nesting that before something is finished you are going to somewhere else.

This is nesting of interrupt requests; before the handling of interrupt request D0 is

finished, another interrupt has come. For nesting there can be two possible scenarios.

The first one is what I have just now illustrated. D1 can interrupt the interrupt service

routine for D0, get processed first and then the ISR of D0 will be resumed. So, when the

D1 interrupt comes, the ISR of D1 will be processed first, then it will come back, and

ISR of D0 will be resumed, and then it will be finished. This will involve nesting of

interrupts and theoretically means any arbitrary number of such nestings can happen

because interrupts may appear one after another. Some important interrupt request that

came earlier might get delayed for its processing.

The other thing is that you can disable the interrupt system automatically whenever an

interrupt is acknowledged, so that handling of nested interrupt is not required. Because I

mean if you disable the interrupt system, then if some interrupt request comes it will not

be considered, it will be ignored. This is another solution.

(Refer Slide Time: 25:38)

Whenever you are processing an ISR you disable the interrupt system. So, nesting will

not happen.

For this typical machine instructions are there for enabling and disabling interrupts, like

EI and DI. So, for this second scenario the interrupt service routine will give an EI

instruction just before return from interrupt.

(Refer Slide Time: 26:17)

Now, we are having a design where whenever an interrupt comes before jumping to the

ISR interrupt is disabled. Like what I am saying is that a program was executing and

interrupt comes. Before your jumping to the ISR, before you are jumping to the ISR the

hardware is automatically disabling the interrupt. So, execution of the ISR will not be

interrupted. And in the ISR before the RTI instruction that is supposed to be the last

instruction, there will be an explicit EI instruction so that before returning back you

enabling interrupt again, so that any future interrupt if it comes should be acknowledged.

Some instruction set architecture combine EI and RTI in a single instruction. So, when

you do a return, for means return from interrupt, interrupt will be automatically enabled

and you do not need a separate EI.

 (Refer Slide Time: 28:28)

We have seen different cases of interrupts. There are some cases that can make the

interrupt handling more difficult. Like we have assumed so far that whenever an interrupt

is coming we have to finish the current instruction, then only we can acknowledge the

interrupt. But there are some cases where you cannot finish the current instruction that

makes interrupt handling more difficult. For some kinds of interrupt it is not possible to

finish the execution of the current instruction.

For such cases you need a special return instruction that would be returning from the

ISR, but after returning it will be restarting the same instruction which was interrupted;

not that it will be returning to the next instruction it will be restarting the interrupted

instruction. An example is page fault; this happens in operating system in the memory

management when a memory location is accessed that is not presently loaded in memory.

You will have to load the requested memory location page and come back and again

restart the instruction, so that it can access the memory location correctly this time.

And you can also think of arithmetic exceptions like division by 0, square root of a

negative number. In such cases you are not able to finish the instruction. Such cases can

make interrupt handling more difficult.

With this we come to the end of this lecture. In the next lecture we shall be continuing

with our discussion on interrupts, and we shall see some more issues particularly

regarding multiple devices sending interrupts and the different types of interrupts.

Thank you.

