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Arithmetic Pipeline

In this lecture we shall be talking about arithmetic pipelines. Now, in a computer system

if you see the way pipelines are used or utilized,  you will find that they are used in

broadly two areas or in two ways. One to speed up the execution of the instructions that

is called instruction pipelining, and second to speed up the arithmetic operations that is

called arithmetic pipelining.

So,  today  in  this  lecture,  we  shall  be  looking  at  some  examples  of  the  design  of

arithmetic pipelines.
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We start with a very simple example. We have already studied fixed-point addition; we

have seen how a ripple carry adder works. In a ripple carry adder we use a cascade of full

adders. Every full adder is carrying out the addition of a pair of bits, it generates sum, it

also generates a carry, and the carry goes to the input to the next stage. So, this carry

ripples like this and that is why the name is ripple carry adder. Earlier we have seen that

due to the rippling nature of the carry, the performance of a ripple carry adder is not

good. The worst case delay is pretty high in fact.



So, it has a bad worst case performance, but now let us see can how we use pipelining to

improve the performance of a ripple carry adder. Well, one assumption we shall make.

We shall be requiring latch or registers if we want to make a pipeline. Our assumption is

that the delay of a latch will be comparable with the delay of a full adder.
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Let see this is the full adder design that we have seen earlier, this is a 4-bit ripple carry

adder. In fact, there are 4 full adders. As I have said each of the full adders will be adding

a pair of bits of the input numbers A and B, generating the sum bit and generating the

carry bit for the next stage.

So, worst-case delay will be the first full adder will be generating a carry and because of

that this carry will be generated, and again this carry will be generated. So, 4 multiplied

by carry generation time in full  adder, this  will  be roughly the worse case delay. Of

course, there will be one more because of this sum generation. Anyway I am looking at

the carry only. So, roughly speaking because it is a 4-bit ripple carry adder, the worst

case delay will be four times the carry generation time of a single full adder.

Now, let us try to do one thing. Let us try to stretch this ripple carry adder in a skewed

way, let us move the different stages of the ripple carry adder in the different time steps.

Let us make them different stages in the pipeline.
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What we are doing is that whatever ripple carry adder was here like this, we are making

it like this. We are stretching it, you see we just ignore these pink boxes for the time

being.

You see that the full adder is still a full adder, but what I have done is that we have drawn

it in a skewed way, and these are the four stages of the pipeline we are defining, and the

small pink boxes will be our latches. See in the first stage only, the last full adder will be

working and the other input bit pairs which are coming; they will be simply stored in the

latches. They will be used later not now.

After the first stage is finished, this carry C1 has been generated and they will be stored

in this latch, and this sum will be stored here. So, now stage 2 comes into the picture. In

stage 2, only the second full adder is active. The others are simply dummy. These values

are copied into the next lecture. Simply this sum is copied.

So, again this carry is copied, this sum is copied in the third stage again. There is a full

adder here. These sums are copied, these bits are copied and in the last stage there is a

full adder. So, you see we are using many latches, but when the input data is transferred

to the second stage, we can parallely feed the next set of data to the first stage. So, there

can  be  the  possibility  of  overlapped  execution  just  like  in  a  pipeline.  This  is  the

advantage we gain here.
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Here is a simple calculation. If we just assume that the delay of a full adder is tFA and a

delay of a latches tL, so the clock period T has to be greater than equal to this full adder

delay plus latch delay. After the pipeline is full, we can expect one result in every time T.

See earlier in a full adder roughly we are getting one result every time 4 x delay of a full

adder, but now in the pipeline implementation, we will be getting one output every clock

cycle, and that is the advantage.

Suppose I have a program like this, where I am doing some addition a large number of

times. Let say there are 10,000 additions. I can use this kind of a pipeline to advantage.

After my pipe is full, I can get one output every cycle. Instead of waiting for one addition

to be complete before starting the next addition, if we have a pipeline, it can definitely

give you speedup for this kind of vector.

So, just like this if you are adding two arrays and number or the elements are being fed to

the pipeline in sequence one by one, then this kind of arithmetic pipeline can be used to

benefit.  Basically  wherever  there  is  something  called  vector  kind  of  arithmetic,

pipelining can give you great benefit. This again we shall come back to later.
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Let us now come back to floating point arithmetic. That is how it can be pipelined. Let us

look at floating-point addition, this we have already seen in detail. Earlier floating-point

addition requires these steps of comparison of exponents and alignment of mantissas.

Then, addition of mantissas, normalization of the result, and because of normalization,

you may need to adjust the exponent. Subtraction will be very similar. Instead of addition

we will be subtracting; an example for two decimal numbers are shown here.

Suppose I have two numbers A and B; with exponents 2 and 3. I make the second one

also 3. This is called alignment of mantissa. After alignment I add 0.9504 and 0.0820. I

get this let say normalization means it starts with 0. So, here I do a normalization. That

means, I shift right by one position.

So, exponent was 3, but because I have shifted right, I have to adjust the exponent and I

have to make it 4. So, my final result will be this into 10 to the power 4. These steps can

easily be mapped into the various pipeline stages.
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This is the floating-point addition hardware that we saw earlier. This is a non-pipelined

version. Just a quick recap: the two numbers to be added over here, sign, exponent and

the mantissa of the fraction, first we are comparing the exponent by using a subtraction

using a small ALU, and after subtraction you see the difference in the exponents will

have to this, smaller number fraction by that many bits. So, there will be a shifter. After

shifting, there will be multiplexer to select the correct fraction, there is an ALU which

will be carrying out addition and after addition, we will have to do normalization. We

will  have  to  check  whether  you  have  to  do  increment  or  decrement,  according  the

shifting left or right and for IEEE format, you may have to do a rounding in the last step.

So, that step is also shown.

This already we have seen earlier. Now, these basic steps you can easily break into as

pipeline stages. I am showing one simple implementation of a pipeline like this. Let say

the two numbers are A x 2 to the power P, and B x 2 to the power Q.
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Here I am not showing the sign, just the mantissa and the exponent. This is P and this is

A, this is Q and this is B. In the first stage S1, I am comparing the exponent. There is an

exponent subtract. This P is coming and this Q is coming. That is subtracting.

The output will  be R which will indicate which one is greater. That means,  R is the

greater of the two, P or Q. That also is known and after doing this, you select the fraction

which one is smaller. So, either A or B, one of them is selected and after subtraction

whatever is the result that many time P - Q, these many positions you are doing a right

shift. This is your mantissa alignment. So, after mantissa alignment, you take the other

fraction  here and this  shifted  fraction  here,  you do an addition  in  stage S2. You are

adding the mantissas.

In stage S3, after adding you have to do normalization. You will have to have a circuit

that will count the number of leading 0’s and depending on that, it will be shifting the

mantissa  left  by that  many positions.  This  is  stage S3 and depending on how many

positions you have shifted your exponent will have to be added by that number. So, this

exponent  correction,  well  here  I  am not  showing normalization.  Just  simple  floating

point addition as a pipeline and these small rectangular boxes are the latches. So, finally

you get the result, and it is a 4-stage simple pipeline.
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Now, floating-point multiplication is a little simpler because here you do not need to

align the mantissas before the operation. You simply add the exponents and multiply the

mantissas.  Then,  normalize  like  if  you  have  two  numbers  like  this.  You  add  the

exponents 3 + 2 = 5. You multiply the mantissas straightaway and it  is 0.7793. It is

already normalized. No change and see your result is this into 10 to the power 5.

Division is similar to multiplication. Here you will be doing subtraction, here you will be

doing division and again for IEEE format at the end, you may need a step of rounding.
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For multiplication and division we have already seen earlier how we can implement that.

Now, we will be seeing a multifunction pipeline for addition and multiplication together,

because already we have seen non-linear pipelines in our last lecture. This is a simple

pipeline for floating point multiply.
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I  am showing  a  simplified  diagram.  You  do  not  add  exponents,  multiply  mantissa,

normalize  rounding,  but  the thing is  that  when I  am saying add exponents,  multiply

mantissa  for  example,  or  normalize  these  may  require  multiple  steps  because

multiplication and addition are not of the same complexity. Multiplication takes more

time than addition. You may have to compute the partial products, then add them. It may

need multiple clock cycles.

So, technically more correct visualization will be something like this multiply mantissa.

You can break it up into two boxes. One is the generation of partial products. This also

will be an iterative process, and for every iteration, you will be doing an addition, you

will be accumulating the partial result sum.

So, both these two stages may be required to execute it for multiple clock cycles and

normalize  and rounding  and  at  the  end,  you  may  need  to  do  renormalizations  after

rounding because the number might become again un-normalized.
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This is a more technically correct version of a floating point multiply pipeline with the

IEEE format, because for IEEE format, you need this last step. And if you look at the

floating point add, you need a mantissa alignment initially. For mantissa alignment, you

have to shift the mantissa certain number of times. This again can be an iterative step;

after the shifting, then you do an addition, you find the number of leading ones, then you

will have to do a right shift or left shift.

Here left shift by that many position, this also can require multiple number of cycles, the

rounding and for IEEE format  renormalize.  So, you see with respect to the previous

diagram, there are some similarities.
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We can combine both the diagrams into a single pipeline like this. This is a combined

adder  and  multiplier.  You  see  this  partial  shift  will  be  required  for  addition,  partial

product will be required for multiplication, but for both, these cases mantissa addition is

required. Similarly partial shift will be required for addition, but for multiplication you

can straight away go from add mantissa to renormalize. You can skip these two steps

because  leading  one  and  partial  shift  will  be  required  only  for  addition.  From

multiplication you can straightaway skip G and H; you can straightaway come to D here.

So, if you have a multifunction pipeline like this, I am not going into much detail on this.

I will just give you an idea and then, you can similarly construct the reservation tables

for addition.
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For multiply operations, you will be needing ABCD and what we are saying is that steps

B and steps C will be requiring little more time. We are seeing that it is taking two time

steps because partial shifting or the partial products and the add mantissa, this will take

more time, and because of that I am assuming that this stage is B and C are being used

for extended period.

For  this  reservation  table,  you  see  that  the  forbidden  latencies  are  1  and 2.  So,  the

collision  vector  will  be this.  So,  intuitively you can say that  your  minimum average

latency will be 3, because 1 and 2 are both forbidden. So, 3 we can use definitely here.

So, let us see for latency 1, there will be collision.
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You see this was the reservation table. So, this X is the first data. Suppose I am feeding

the second data, I mean it is after one cycle. So, Z has shifted here, Z has shifted here, X

as you see X and Z will collide in B and C. So, latency 1 will lead to a collision. So, X

and Z refer to consecutive data items which are fed, Z is fed earlier X is fed now.

Now, if I use latency 2 that will  also lead to a collision.  Latency 3 does not lead to

collision.
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For  multiplication  you  can  feed  the  data  with  a  latency  of  3  without  any  problem.

Similarly for addition, the reservation table will look like this. So, here again this F and

H are been used extended period here.  There is  only one forbidden latency, 1.  Here

minimum average latency will be equal to 2. So, here you can similarly justify that.
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To  summarize  this  arithmetic  pipeline  is  a  very  standard  feature  in  modern  day

processors. We shall see later in some detail about vector processors. Vector processors

are computer systems that are specifically designed to operate on vectors of data very

fast. We shall of course first be discussing later in the next week that how we can build or

how we can convert our MIPS architecture that we have seen earlier into a pipeline, how

we can  execute  the  instructions  faster,  but  then  we  shall  see  that  how we  can  also

augment  that  pipeline  with  arithmetic  pipeline  concepts,  so  that  vector  arithmetic

operations can also be made faster. 

What we have seen today? We have seen some very simple examples of some arithmetic

pipelines, and one instance of a multifunction pipeline of multiplier and added together.

We have seen that we can speed up operations by implementing arithmetic circuits as a

pipeline, provided we have continuous stream of data to be fed to that pipeline. That is

possible only if we have vectors of data to be operated on.

We shall see the impact of arithmetic pipeline, we shall see later that arithmetic pipeline

can complicate the design of the MIPS32 pipeline, but this we shall be seeing only later.



With  this  we  come  to  the  end  of  this  lecture.  There  are  a  few  things  we  shall  be

discussing  after  this;  we shall  be  looking  at  the  input-output  process  in  a  computer

system,  how  peripheral  devices  are  interfaced  to  a  computer  system,  what  are  the

different characteristics of the peripheral devices that makes the interfacing somewhat

more complicated or complex as compared to interfacing memory devices.

And also, you shall be looking at some of the commonly used bus standards that we see

everywhere today, and of course, after that we shall be looking at how we can make our

computers faster by incorporating pipeline at the instruction level, and also as I had said

at the arithmetic level. So, with this we stop for today.

Thank you.


