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Basic Pipelining Concepts

In this lecture will shall be talking about some Basic Pipelining Concepts. Now you may

wonder why we are discussing pipeline in the context of floating point arithmetic and

floating point; I mean hardware implementation of arithmetic functions.

I would like to tell you here is that, pipelining is a very commonly used and widely used

technique to enhance the performance of a system without  significantly investing.  In

hardware if I want to make something faster I can always replicate some functional units.

So, instead of one adder I can use 5 adders; my addition time will speed up 5 times. But

here the philosophy is different; we are not replicating hardware, we are using a different

kind of a philosophy by which we can promote something called overlapped execution

whereby the performance improvement can be quite close to what we can achieve by

actually replicating the hardware.

We are getting good return of investment without making any significant enhancement in

the  hardware.  This  is  the  basic  concept  of  pipelining.  The reason we are  discussing

pipelining  here  is  that,  we  shall  see  how  we  can  use  pipelining  to  improve  the

performance of arithmetic circuits that you have already seen.

Later on we shall also see how we can enhance the performance of the processor, that is

called  instruction  level  pipelining;  how instructions  in  the  MIPS32 data  path can  be

executed  faster  by  implementing  a  pipeline  there.  But  before  that  you  will  have  to

understand what is a pipeline, how it benefits the designer, and what kind of speed up

you are expected to get.  So,  here in this  lecture  we shall  be talking about  the basic

pipelining concepts.



(Refer Slide Time: 02:57)

As I had said pipelining is nothing but a mechanism for overlapped execution of several

different computations. Several different computation means they are possibly carrying

out some computation on several input data sets. The basic principle is that we try to

divide our overall computation into a set of k sub-computations, called stages.

As I had said if we do this there is a very nominal increase in the cost of implementation.

Again  I  shall  be  illustrating  it  with  a  real  life  example.  But  we  can  achieve  very

significant speedup that can be very close to k. This is really fantastic; we are not really

investing  in  additional  hardware,  just  we  are  dividing  the  hardware  into  smaller

functional  sub-blocks,  and  by  doing  that  we  get  an  architecture  where  we  can

equivalently get a speedup of up to the number of sub-functional units that you have

divided our overall computation into.

This kind of pipelining can be used in several different areas of computer design. For

instruction execution we shall see later that several instructions can be executed in some

sequence, because you have already seen earlier that when instruction is executed in a

processor  basically  there  is  a  fetch  and  execute  cycle.  During  fetch  we  fetch  an

instruction,  then  we  decode  it;  depending  on the  type  of  instruction  we  can  do the

appropriate actions or operations to complete the execution. Now the idea is that when an

instruction is being decoded and it is being executed, why not fetch the next instruction



and try to decode it at the same time; this is what I mean by overlapped execution. This

is what is there for instruction pipelining.

Similarly, for arithmetic computation we shall be seeing how we can speed up arithmetic

computations by implementing pipeline. Similarly for memory access also we shall see

later  again  that  we  can  use  the  concepts  of  pipelining  to  speedup  accesses  from

consecutive locations in memory.

(Refer Slide Time: 06:16)

Let us take a real life example say of washing. Suppose we have a requirement where we

need to wash clothes, dry them and iron them. Suppose I have a machine, which can do

washing,  which  can  do drying,  which  can  do ironing.  So,  there  are  3  stages  of  the

machine. I feed my clothes to the machine. The clothes will be moving through the 3

stages and then I can feed the next cloth or next set of clothes whatever.

Let us assume that this whole thing takes a time T. So assuming that I can feed one cloth

at a time, if there are N clothes I need to do washing, drying and ironing, the total time

will be N x T. Now as an alternative what we are saying that we are not buying 3 such

machines, but rather we are breaking the machine into 3 smaller parts. There will be one

machine  which can do only washing,  there will  be one machine  which can do only

drying, and one machine which can do only ironing. So, roughly the total cost remains

approximately equal to the total cost of the original machine. Assuming that they take



equal time, let us assume that earlier it was taking a time of T, now each of these will be

taking a time of T/3.

We shall see very shortly that if I do this then for washing, drying and ironing N clothes,

I need a time (2 + N). T/3. So, if N is large you can ignore 2; it is approximately N.T/3,

which means I have got a speed up of approximately 3 (equal to the number of pieces I

have broken my original machine into). This is the essential idea behind pipelining; I can

get a significant speedup.

(Refer Slide Time: 09:01)

Let us see, washing - drying - ironing; after washing is completed I will be giving it to

the dryer, after drying is completed I shall giving it to ironing.

To start with, during the first time slot let us say the time slots are all T/3, T/3 each, the

first cloth reaches the washer. It finishes washing at the end of this time slot. Then this

cloth-1will be moving to D. What will happen in the next time slot? This cloth-1 will be

moving to D, but now the washer will be idle. So, I can feed this second cloth to the

washer.

Now, the washer and dryer are working on two different clothes in an overlapped way.

So, at the end of this time slot, dryer has finished with cloth-1 and washer has finished

with cloth-2. So, what will happen next? Cloth-1 will come here to the ironer, cloth-2

will come here, and cloth-3 will come to washer.



Now you see you see all these 3 machines are busy. Now at the end of this time what will

happen? Cloth-1 is done and will be taken out; at the next time cloth-2 will come here,

cloth-3 here, and next cloth will come here. 

You see after this initial two periods of time that is required for this pipeline to be filled

up, after that in every time slot I am getting one output; that means, one cloth is finishing

and I can take them out. That is why I talked about the total time as (2 + N). T/3.

(Refer Slide Time: 11:36)

We can extend the concept discussed so far to actual processor designs. Suppose for

some computation we want to achieve a speedup of k. The two alternatives are with us.

We can use k copies of the hardware, this will obviously give us a speedup of k, but the

cost will also go up k times because we are replicating the hardware.

Alternative 2 is pipelining.  We are splitting the computation into k number of stages.

This will involve very nominal increase in cost, but potentially it can give you a speedup

of k. But one thing is required which we ignored; you see if you think of the washing

example – washing, drying and ironing, see after one machine finishes and a cloth comes

out and goes to the input of the other machine, I need some kind of a tray or a buffer in

between. The cloth will be temporarily stored in that buffer before it can be fed to the

next  machine.  Because  it  may so  happen then  when the  first  machine  finishes  with

washing, the dryer is still working on the previous one, and it is still not free.



So, only when it is free then only the cloth can be given to the dryer. Thus, I need some

kind of a buffering mechanism in between the stages. This is what we talk about here –

the need for buffering. For the washing example is it said we need a tray between the

machines to keep the cloth temporarily before the next machine accepts it. In exactly the

same way when we want to implement pipeline in hardware, we need something similar

to a buffer. It is nothing but a latch or a register between successive stages, because one

stage finish some calculation and prior to giving it to the next stage, maybe the next stage

is still not finished.

So, that value is temporarily kept in the latch, so that the next stage whenever it is free

can take it from the latch. This is the idea behind hardware pipelining. 

(Refer Slide Time: 14:41)

I  am showing a schematic  diagram of  a  k  stage  hardware  pipeline.  This  is  called  a

synchronous pipeline because there is a clock which is synchronizing the operation of all

these stages. So, as you can see there are k number of stages. Each stage involves some

computation, S1, S2 to Sk, and also there is a latch. The latch will temporarily store the

result of the previous stage before the next stage is ready to accept it. The clock will be

generating active signals periodically and clock period will be large enough, so that all

these stages can finish their computation and also it should take care of the delay of the

latch. This we shall come a little later how the clock frequency or the clock period can be

calculated. The stages S1, S2, … are typically combinational circuits. So, whenever the



next active edge of the clock comes, the next data is fed to S1, the output of S1 goes to

S2, S2 goes to S3, and so on. There is a shift that goes on whenever the clock signal

appears. In synchronism with the clock the pipeline shifts result from one stage to the

other in a lock step fashion. 

(Refer Slide Time: 16:34)

You can classify or categorize pipelined processors based on various parameters  like

degree of overlap, depth of the pipelining, structure of the pipeline, and how we schedule

the operations.

(Refer Slide Time: 16:57)



Let us very briefly look at these. When you talk of the degrees of overlap, one extreme

can be serial that is a strictly non-pipeline implementation. The next operation can start

only after the previous operation finishes. So, here I shown it schematically like this, this

is an operation let us say which takes 1 2 3 4 5 steps. So, only after the first operation is

completed  only then  the  second operation  can start.  It  is  strictly  sequential,  with no

overlap.  There  can  be  partial  overlap  as  the  second  diagram shows.  Partial  overlap

naturally results in a speedup because earlier it was taking so much time, but now it is

taking 2 time units less. In the extreme case you can have something called pipeline as I

said. There is almost complete overlap; when the first operation he is finished with the

first step it moves to the second step, and the second operation can start with its first step.

This is called fine-grained overlapped execution.

Here naturally the time required is much less. So, depending on the degree of overlap

you can classify how deep or how efficient your pipeline implementation is. Ideally you

should have something like this.

(Refer Slide Time: 19:12)

Then comes the depth of the pipeline. We have seen earlier that if there are k number of

stags, then we can have a potential speedup of up to k. Then you can argue why do not

have a very large value of k so that we can get a very large speedup. But there are some

limitations to increase the value of k; we cannot break up a computation into smaller



pieces beyond a limit. Beyond a limit it does not make sense, maybe the delay of the

latch will be more will become more than the delay of the computation.

So, the depth of the pipeline is an issue. You can either have a shallow pipeline with a

few number of stages, or you can have a deep pipeline with large number of stages. If

you have 9 stages then potentially you can have a speedup of 9. Depth of pipeline is a

design issue. But it is also very important to evaluate that you can increase the depth all

right, but you must also see in what way you can allow the computations to proceed so

that you can have overlapped execution without any conflict. We shall be seeing later

that conflicts in a pipeline are very important and there are so many techniques to handle

them.

For a shallow pipeline because we are making the number of stages smaller, individual

stages are more complex. But if I have a very large number of stages, each stages will

become simpler.

(Refer Slide Time: 21:18)

Next  comes  structure  of  the  pipeline.  We can  have  a  linear  pipeline  that  is  most

conventional. Linear pipeline means I have divided the computation into a number of

stages that are supposed to be executed linearly one after the other. That means, there is

some kind of a straight-line sequence; for every data input first A, then B, then C, and

then you take out the result. This is the order of execution for every input data. But for a

non-linear pipeline, see for very complex pipeline implementation you can have this kind



of non-linear pipelining. What non-linear pipeline says is that the stages do not execute

in this kind of a straight-line or linear sequence. You see this is a pipeline again with 3

stages A B C, of course I have not shown the latches.

The arrows indicate the connection between stages. Like you can see from A there is a

connection to B, from A you can also move to C, and also you can take a result out from

B, you can go to C, from C either you can take a result out or you can move it back to B,

or we can move it back to A, and new data is coming always to A. Here in this example a

possible sequence can be tis A B C B C A C A. You can have some other sequence also,

say A B C B C.

This  is  so-called  non-linear  pipeline  where  the  stages  may  not  execute  in  a  linear

sequence. As this example shows a particular stage may execute more than once for a

given data set. 

(Refer Slide Time: 24:10)

The last classification depends on how we are scheduling the pipeline; it can be either

static or it can be dynamic. Static means you have the pipeline stages and in the previous

example you have seen that either I can execute them linearly or I can execute them in

some particular order by feedback, etc. Static says same sequence of pipeline stages are

executed for all data sets, say you can have non-linear piping all right, but the sequence

of stages you are executing will always remain the same, that will not change with time.



So, if one data or instruction stalls, I cannot feed the new data. Stall means due to some

ongoing computation, I have to stop the pipeline temporarily. Here it says if I stall a

particular data, then all the subsequent data sets also gets stalled. 

In  contrast  we  can  have  a  dynamic  pipeline  where  with  time  the  pipeline  can  be

configured, so that different sequence of pipeline stages can get executed. This allows

feedforward and feedback connections as the previous example showed. This is a feed

forward  connection  and  this  is  a  feedback  connection.  One  example  of  a  dynamic

pipeline is one that is able to carry out both floating point addition and multiplication.

(Refer Slide Time: 26:27)

When you are doing addition then certain sequence of stages will be executed, when you

are doing multiplication some other sequence of stages will be executed. This is example

of  dynamic  pipeline  scheduling.  Reservation  table  is  a  very  commonly  used  data

structure that represents the utilization pattern of successive stages. Let us take a simple

example. Suppose I have a linear pipeline S1 S2 S3 S4. When a data comes, in the first

cycle it goes to S1, second cycle it goes to S2, third cycle to S3, fourth cycle to S4.

You see the reservation table represents exactly that. On one side I show the stages other

side I show the time steps. First time step we use S1, second time step we use S2, third

time step S3, fourth time step S4. So, this is basically a space-time diagram that shows

precedence relationship among the pipeline stages. The x-axis shows the time steps and



y-axis  shows the  stage.  Number  of  columns  indicates  the  total  time  required  by the

pipeline to evaluate the result. Let us look at a more complex reservation table.

(Refer Slide Time: 27:51)

Here we look at that non-linear pipeline example we showed earlier.

For  the  same  pipeline  example  I  am  showing  two  possible  reservation  tables.  One

computation X is here other computation Y is here. So, what it shows? It says that for

computation X we need 8 steps: first time step S1, second time step S2, third time step

S3, fourth time step again S2; that means, from S3 again you go back to S2, fifth time

step again S3, sixth time step S1. So, from S3 you go back to S1, then again S3. You

follow this path to S3 then again S1 again and you are finished. The Y computation is

like this: first time step S1 then S3. So, you follow this path straight away then S2, then

S3, then S1, S3 again S1 again, from here you come out.

So,  X comes  out  of  here  and Y result  comes  out  of  here.  For  the  reservation  table

although all  of these are not being shown in these examples,  the first  one is  shown.

Multiple cross marks in a row means that for this computation this stage S1 will be used

in time cycles 1, 6 and 8; stage S2 will be used in time cycles 2 and 4; S3 will be used in

3, 5 and 7. So, multiple X’s in a row means repeated use of the same stage in different

time cycles. Sometimes you may need a stage for an elongated period of time.



You can have two consecutive X’s side by side, which will mean extended use of a stage

over  more  than  one  cycle.  Sometimes  it  may  be  required  you  may  need  for  a

computation stages required for two cycles. So, there will be two X’s side by side. It is

not shown in this example, you can also have multiple check marks in a column. That

means, in a particular time step you can have a check mark here as well as here, which

means both S1 and S2 are working together on the same data set.

(Refer Slide Time: 30:58)

So, multiple stages are used in parallel during a clock cycle. In general you can have all

these characteristics in a reservation table. Let us make a quick calculation how we can

compute the speed up and efficiency of a pipeline. We define some notations; tau is the

clock period of the pipeline,  ti  denotes the time delay of the stage i circuitry, and dl

denote the delay of a latch. There are k numbers of stages S1 S2 to Sk. So, the delays

will be t1 t2 to tk. The maximum stage delay I am denoting as tau_m which is max of ti.

The minimum clock period should be satisfying this criteria,  it  must not be less than

tau_m + dl; that means, the maximum stage delay plus the delay of a latch. The pipeline

frequency f would be the reciprocal of tau.

f will represent the maximum throughput of the pipeline. That means, in this rate the

output results will be coming out of the pipeline. If you have a linear pipeline you are

expecting one result to come out every cycle, but for a non-linear pipeline things will



become more complex as we will see later, you may not be generating a result every

clock cycle.

(Refer Slide Time: 32:41)

The total time to process N data sets is given by this expression.

Now if you have a equivalent non pipelined processor where we do not have pipelining,

the total time will ne N x k x tau.

Here  of  course  I  made  an  assumption  that  all  stage  delays  are  equal  and  the  latch

overheads are ignored, but still this will help us to make a very fair comparison. Let us

see how much improvement we are getting by pipelining. As N becomes very large this

speedup tends to k.
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This simple expression tells you that we can achieve a pipeline speedup of maximum k

as  n  tends  to  infinity;  and we can  define  a  term called  pipeline  efficiency which  is

defined as how close the actual pipeline performance is towards ideal value. You see the

actual speed up is Sk just as we had expressed, and the ideal speed up is k.

So, I can divide Sk by k. How close this fraction is to 1; if it is 1 which means I have got

the ideal value maximum efficiency. But in practice the denominator is greater than the

numerator. So, efficiency is a little less than 1. 

The pipeline throughout can be defined as number of operations completed per unit time.
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This  is  a graph I  am showing. As you vary the number of tasks n the speedup also

increases. But for a 4-stage pipelining it levels up to 4; it cannot cross 4. For 8 stages it

levels to 8, for 12 stages it approaches 12. So, it can never cross k.
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Lastly I talk about the clock period.  Actually the clock period depends on few other

things. The minimum clock period must satisfy an expression like this. 

When the clock signal is generated it goes to all points in the pipeline latches. Because of

unequal distance of the wires the clocks may not reach all the latches at the same time,



and there will be small time difference. This is called clock skew. Clock jitter means

because of noise is on the neighboring lines due to capacitive affects,  the delay of a

signal line can vary slightly from one time to other; maybe for the same latch the period

of the first one was tau for the next one it is a little less than tau, for the next on it will be

little greater than tau, there can small variations this is called jitter.

So, skew is the maximum delay difference between the arrival of clock signal at the stage

latches, and jitter denotes maximum delay difference between the arrival of clock signal

at the same latch. Designers always try to lay out the clock signal in such a way that

skew and jitter is minimized, but still there will be a worst case value. 

This  is  the more  accurate  expression that  gives  you some lower bound of  the clock

period that can be used. 

With this we come to the end of this lecture. If you recall what we saw in this lecture, we

have basically tried to convince you that pipelining is a concept where you can have

significant speedup without making a significant investment. In our next lectures we will

see that there are some complexities in the pipeline; for example, for non-linear pipeline

you may be using the same stage more than once for the same data. So, you are not

allowed to feed the input data at every clock; if you do it, there can be some conflicts or

clashes in some stages. 

Something called pipeline scheduling to decide when I need to feed my next data is very

important.  We shall  be looking into pipeline scheduling aspects and then we shall be

seeing how some of the arithmetic operations in particular the floating point operations

can be implemented in a pipeline.

Thank you.


