
Computer Architecture and Organization
Prof. Kamalika Datta

Department of Computer Science and Engineering
National Institute of Technology, Meghalaya

Lecture - 04
Software and Architecture Type

(Refer Slide Time: 00:26)

Welcome to the fourth lecture software and architecture types. A software or a program

consist of a set of instructions required to solve a specific problem. So, by that what we

mean like a program to sort ten numbers, a program to add some numbers or a program

to find out inverse of a matrix or you say a compiler a C compiler that converts your high

level language into some machine language. All of these are a kinds of software. So,

software consists of a set of instructions. A set of instructions are provided to perform

certain task. And the operating system also is an software that helps us in using the

computer system.

(Refer Slide Time: 01:30)

So, what are the types of program that we have? Broadly we can classify the programs or

you can say software into two types. First one is the application software which helps the

user to solve a particular user level problem and it may require a system software for

execution. Similarly, a system software is basically collection of many programs that

helps the user to create analyze and run their programs. So, this is very important to

know that we have two kinds of programs; one kind is application software, another kind

is system software.

(Refer Slide Time: 02:26)

Now, coming in detail of application software. This helps the user to solve a particular

problem like what do you mean by a particular problem. Let us say we want to have a

financial accounting package, I want to do some kind of financial accounting stuffs. So,

for that I need a very specific software for that purpose, specific to that particular

application. What is the application the application here is the financial accounting. In a

similar fashion, a mathematical package like MATLAB, which is used to perform a

particular kind of mathematical operations and various programs can be written using

that. So, those are specific to some mathematical operation.

Similarly, you think of an app we have in our mobile phones to call a cab that is also an

application, but what that application is doing that particular application is helping us to

call a cab. In a same way, there can be various apps to monitor your health, there can be

various apps to do various other functions. So, all these comes under application

software.

(Refer Slide Time: 04:01)

Now, coming to system software. A system software is a collection of programs which

helps user run other programs. So, a system software is also a collection of program, but

it also helps other user to run a particular program. So, let us see some typical operations

that are carried out by a system software. What it does, it handles user request, it

manages application programs and storing them as files, it also does file management in

secondary storage that is very important, running standard applications such as word

processor, internet browser, etc, managing input output unit, program translation from

source form to object form, linking and running user program and many others.

(Refer Slide Time: 05:23)

So, now what are the commonly used system software that we all know is our windows

machine, Linux, your MAC. So, various kind of operating system that are there consists

of system software. And this program it continues running until you have switched off

your machine or your machine is actually shut down. If your machine is shut down, the

system software will automatically stop, but as long as your system is running those

software will be running. You have compilers, you have assemblers, you have linkers and

loaders, and also editors and debuggers.

(Refer Slide Time: 06:15)

So, what is an operating system? It is a system software as I said and it provides an

interface between the computer hardware and the user. So, the interface between your

hardware and what is your hardware here your hardware is the processor, your hardware

is the memory, your hardware is the input-output. So, how does the user actually interact

with the hardware is through an operating system. So, operating system is sitting in

between which helps in talking between the user and the hardware. The hardware and the

user talk to each other through this operating system.

And there are two layers, kernel layer contains the low level routine. So, from this

diagram, we can see that hardware sit in the bottom, and then we have a kernel which

contains low level routines for resource management, and then we have a shell. Actually

all users and application software cannot access this computer hardware directly. So,

through this shell it provides an interface for the user to interact with the computer

hardware through the kernel. So, kernel is sitting between shell and computer hardware;

and between kernel and user, shell is sitting. So, shell is an interface for the user or the

application software to interact with the computer hardware through this kernel.

(Refer Slide Time: 08:06)

Operating system is a collection of routines that are used to control sharing of various

computer resources as they execute application programs. So, as you know that when we

execute a program, some set of instructions get executed. So, for executing such

instruction what we are doing we have to load those instruction into the memory, and

then from memory it is brought into the processor and each time it is executed. When a

processor is executing something the processor is executing only that particular

instruction and then many other instructions can also come in other programs can also

come in and be in the queue for execution.

So, it is the operating system task that how the various resources can be managed and

allocated to processor. When the processor will be allocated to a particular process at

what time, it is up to the operating system to decide upon. The task include assigning

memory and disk space to programs and data files. Moving data between IO devices,

memory and disk units. Handling input output operations with parallel operations were

possible. And handling multiple user programs that are running at the same time. So,

these are few tasks that are included. There are many more task that an OS performs.

(Refer Slide Time: 10:08)

Now, depending on the intended use of computer system the goal of an operating system

may differ like think of a classical multi programming system what happens there. There

are several user programs loaded in memory and the OS can switch to another program

when any other program is blocked for IO or any other purpose. So, let us say a program

is running and at that point of the time that program needs some IO, an IO request has

come for that particular program. So, the time it requires to handle that IO request, the

processor can switch to another task and that another task can be assigned to the

processor and run. So, the switching from one task to another is the main goal of

classical multi programming system.

And what was the main objective, here the main objective was to maximize the resource

utilization. So, the CPU must not sit idle; if it is doing some particular task and at a time

that particular task requires some other resources for completion of that task then the

processor has the flexibility to bring another task and execute that, and later when that

particular task has completed its IO operation that task can get executed. Now, modern

time sharing systems has some other properties. These systems are widely used because

every user can now afford to have a separate terminal. Now, the processor time is shared

among number of interactive users and here the main objective is to reduce the user

response time. What is user response time, the user has requested for a task and by what

time that particular request can be taken care of, so that is the user response time.

(Refer Slide Time: 12:19)

We have other kind of systems like real time systems. In real time systems there is a time

constraint associated with it; and whenever there is a time constraint associated with it

we can say that there is a specific deadline associated with the task. And these deadlines

can be hard or soft. What do you mean by hard deadline? By hard deadline we mean that

that particular task has to finish within that particular time. And by soft deadline that

even if that deadline is not met, the system will not fail, but in a hard real time system if

the deadline is not met the system may fail. Interrupt driven operations are also there

where the processor is interrupted when a task arrives, this happens for some sporadic

real time tasks, where there is no fixed time for task arrival. We do not know at what

time a task will arrive. Some of the examples are missile control system, industrial

manufacturing plant, patient health monitoring and control, and automotive control

systems.

For mobile system the user responsiveness is most important. And sometime a program

makes the system slow, let us say that we are running some programs in mobile. And in

mobile we have limited memory, limited capability of certain things, we are putting

everything in a very small space. So, if the computer is not able to handle it, what it does

it stops those programs. So, it is forcibly stopped basically.

(Refer Slide Time: 14:27)

Now, we will see the classification of computer architecture. Broadly, it can be classified

into two types von-Neumann architecture and Harvard architecture. So, we will be

coming into both these kind of architecture and both these kind of architecture are used

in today’s computing. How is a computer different from calculator? So, what a calculator

does? it has got a circuitry it is adding something, it is dividing something, it is

multiplying something and we are getting the result. It is a small device where it is

battery operated and you can see the result in that small space.

Now, is there any way that we can tell the calculator that I need to perform sequence of

calculation one by one. But if you think of the old calculators which can only perform

the task of adding 2 numbers or 10 numbers or 15 numbers. But in contrast to that if you

see how it will be if we can load all the program into the memory and then I give the task

to the computer that process all these instruction that I have stored into the memory one

by one. So, this concept is known as stored program concept, where we load both the

program and data into the memory and the programs are executed one by one and

whatever data is required data are also read. So, we can write a program, store it in

memory and we can run it in a go.

(Refer Slide Time: 16:25)

In von-Neumann architecture, both the instructions that is the program and the data are

stored in the same memory module. So, this is the memory module and this is the

processor both our program and our data are stored in same memory and it is very

flexible and easier to implement. Suitable for most of the general purpose processor. But

where is the bottleneck and what is the disadvantage? See we have loaded both the

programs and data into the memory. If there is a way that I want to access both the

program that is the instruction and the data at the same time, I cannot do that, why,

because I have a single memory where both my program and data are stored.

(Refer Slide Time: 17:25)

So, I am trying to say something like this. This is again my memory where in some

location both my instruction as well as my data are stored; and the processor is connected

to this. Now, when the processor is accessing instruction it cannot get the data at the

same time, but what if we can get the instruction and the data at the same time, we will

see that this feature is also required for reducing the processor and the memory speed

gap.

So, we can see here this is one of the disadvantages; the processor memory bus acts as a

bottleneck. So, at a time either instruction or data can be accessed. All instruction and

data are moved back and forth through this pipe. So, this is the bottleneck, where

processor has to wait for the programs as well as data. Now, what if we have a different

program memory and a different data memory; then at the same time, we could also get

the program that is the instruction, and at the same time we can get the data.

(Refer Slide Time: 19:19)

Let us see this kind of architecture is called Harvard architecture where we have separate

memory for program and data. Instructions are stored in program memory and data are

stored in data memory. So, we have a program memory and a separate data memory.

Instruction and data access can be done in parallel; obviously, these are two different

memories. So, the processor can access the program memory and the processor can also

access the data memory at the same time. So, some of the microcontrollers and pipelines

with separate instruction and data caches follow this concept. We will see what is

pipeline and we will also see that how separate instruction and data caches follow this

approach. But here also this processor and memory bottleneck still remains. This is the

processor; we will be accessing the memory, processor will be accessing the data, but

multiple data cannot be brought in at the same time.

(Refer Slide Time: 22:44)

Now, people are talking about some emerging architectures as well. So, whe they are

talking beyond von-Neumann architecture. So, there is a proposal for in memory

computing architecture where they say that both the storage and the computation can be

done in the same functional unit. So, this is an emerging area, researchers are still

working on it, looking into various aspects of it. It is projected that a circuit element

called memristor; we have heard of resistor, capacitor, inductor. So, memristor is another

circuit element which is projected to make it possible in near future. We have to wait for

that, we cannot say at this point that off course, we will be coming with a non von-

Neumann architecture in near future, but people are looking into it, people are thinking

about it.

Memristors can also be used in high capacity non volatile resistive memory systems and

can also be controlled to carry out some computation. So, memristor can be used as

memory, memristor can also be used for logic computation. Because of these features we

are saying that we can have some kind of in memory computing using memristor in near

future.

(Refer Slide Time: 22:22)

Now, let us see that as I said that we have separate separate program memory and data

memory. So, instructions are stored in instruction memory and data are stored in data

memory. Pipeline is a concept that is used to speed up the execution of instructions, we

will be looking into this in the later phase of this course, but just to give you a broad idea

pipelining means overlap execution of instructions. An instruction execution is typically

divided into five stages, the stages are; fetch the instruction, then we decode that

instruction. After decoding that instruction, we execute that instruction. And after

execution of that instruction, it may be required that we need to store the result into

memory or we need to store the result into any of the processor register as well. So, that

write back result to register file can also be done in the fifth stage.

So, an instruction execution cycle is basically divided into these five broad steps,

instruction fetch, decode, execute, memory operation and write back. And these five

stages can be executed in an overlapped fashion. We are never saying that we are doing

parallel processing rather we are saying, we are doing some kind of overlapped

execution of instructions. And this results in a significant speed up by overlapping

instruction execution.

(Refer Slide Time: 24:27)

Let us see how. So, these are the clock cycles and these are the five instructions that we

are going to execute. First instruction is having fetch, decode, execute, memory

operation, write back. So, once I have fetched an instruction it is now gone to the decode

phase. Once I am decoding that first instruction, can I not fetch the next instruction.

How, because decoding is performed in your processor and fetching is done from

memory. So, we can overlap instruction decode and instruction fetch. So, when I am

decoding the first instruction, the next instruction can be fetched.

Similarly, when I am executing the first instruction, execution of that instruction happens

in ALU. When I am executing this particular instruction then the next instruction can get

decoded in the control unit. And parallelly the third instruction can be also fetched

parallely. So, we can see that fetching one instruction, decoding one instruction and as

well as executing an instruction can all happen in parallel.

Let us move on with the next stage where we see that we are fetching an instruction - the

fourth instruction; we are decoding the third instruction. We are executing the second

instruction and we are doing some kind of memory operation for the first instruction. But

you see if you are doing some kind of memory operation for the first instruction and you

are fetching another instruction you cannot do this parallelly. Why because fetching can

be performed in from the memory and some memory operation will also be done in the

memory. But we can allow this to happen if we have Harvard kind of architecture.

Recall what I said in Harvard kind of architecture we have a program memory and you

have a data memory. And now when you are fetching instruction, you are accessing the

program memory. And when you are doing some memory operation that means, you are

operating on data memory because what you are doing either you are writing something

into after execution or even if you are reading something. So, both of this can happen in

parallel if and only if you have such kind of architecture.

If you have an architecture where both the programs and the data are stored in single

memory like this it would not have happened. So, this can only happen like fetching of

an instruction and memory operation if you have Harvard kind of architecture. And what

speed up we are gaining just see if these five instruction would take five cycles to

execute then if one by one we want to execute it, but it would have been taken twenty

five cycles, but now the first result is available after five and the next four result can be

available after one by one. So, more four cycles will be required that is 5 + 4 = 9, a total

of 9 cycles will be required to get the result of all five instructions.

(Refer Slide Time: 28:57)

So, as I said how can this Harvard architecture actually help in clock cycle 4, as we have

seen that instruction 4 was trying to fetch an instruction, while instruction 1 may be

trying to access some data. In von-Neumann architecture one of these two operations

will have to wait resulting in pipeline slowdown. But in Harvard architecture, what can

be done is both the operations can be done parallely because we have separate data

memory and separate program memory.

So, in this lecture, we have seen various software that are existing like application

software, system software. The various kind of architecture that are existing, i.e. von-

Neumann architecture, and the Harvard architecture, and how Harvard architecture

actually helps in executing an instruction in a better and faster fashion.

Thank you.

