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Lecture - 37
Design of Dividers

In the last few lectures we had seen how we can implement adders and multipliers. In

this lecture we shall be looking at the design of dividers, the various algorithms we can

use and how we can implement them in hardware. So, the topic of our discussion today

is design of dividers.

(Refer Slide Time: 00:46)

Before we start let us look into a basic problem that is there in the division operation;

because the first thing is that division is more complex than multiplication because of

various reasons that we shall be seeing during the course of this lecture.

Now, to appreciate this point that division is indeed more difficult than multiplication or

any other  arithmetic  operation,  let  us  look at  some typical  facts  and figures that  are

present in one of the commercial processors, Pentium 3. Here in a table we are showing

for some typical arithmetic operations two things, one is called the latency other is called

the  cycles/issue.  One thing  we can  see  from this  table  is  that  the  values  for  divide

operation (either integer or floating point whatever) is much higher as compared to the

values for load, store, multiply, addition, this kind of operations.



These are the values for Pentium 3 and even in the very recent processors the relative

differences still remain. We shall be coming back to this slide once more; first let us see

what do you mean by latency and cycles per issue.

(Refer Slide Time: 02:26)

Let us look at this first. Latency refers to the minimum delay starting from the time when

the first set of input is applied and up to which the first result is obtained. So, latency

talks about the just the initial delay, the delay for the first time. Suppose I have a circuit it

can be an adder it can be a multiplier divider whatever I apply a set of inputs. Now, the

question is after how much time I get my result --- this time duration is called latency.

So, minimum after how much time I can get back my first result. 

Now there is another thing. Well, you see I apply an input I get back an output after some

time that is equal to the latency. Now the second point is that how frequently can I apply

the inputs; do I have to wait until the operation is complete before I apply the second

input, or I can overlap my operation in some way.

Well, if I have to wait for the operation to be complete before I apply the next input, then

this is so-called cycles / issue. This is called cycles per issue --- after minimum how

much gap I can apply my second input, that will be the same as latency. But if we are

allowed to have some kind of an overlap, meaning before the first operation is complete I

am allowed to feed in the next input or the next to next input, this is what happens in a



typical pipeline processor which you shall be looking into detail much later during the

course of these lectures.

In a pipeline implementation we can apply inputs much faster although the latency value

remains basically the same. I apply one input, after how much time the result comes out

that remains same, but the inputs that I apply one after the other the gaps between them

that can be less. So, whenever we apply a new set of inputs to some functional unit like

an adder or a multiplier, we call it an issue; that the inputs have been issued.

Now, as I have said that if we have pipelined implementation, we can reduce the number

of clock cycles between successive issues, but for a circuit like divider it is very difficult

to have a pipeline implementation, most of the dividers are non-pipelined. So, for such

circuits the number of clock cycles between successive issues is much higher; next input

can be applied only after the previous operation is complete. So, let us go back to the

previous slide and see, for load store kind of instructions latency is 3 clock cycles while

cycles per issue is 1. That means, I can issue 1 such instruction every clock cycle; there

is an overlap possible.

For integer multiply again latency is 4. So, I can complete multiplication in 4 cycles, but

I can apply new sets of inputs every 1 clock cycle. For floating point addition again 3 is

the latency, 1 is the clock cycles per issue; and for floating point multiply it is 5 and 2.

But divide latency and cycles per issue values are same 36 here, and for floating point

38; this means that division units are not pipelined, they actually work as a single non

pipeline block. You apply an input get the output, after it is finished only then you apply

the second input. So, cycles per issue is equal to the latency.
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Let us now look into the process of integer division. What you really do when you divide

2 numbers. For integer division we have something called a divisor, something called a

dividend. We divide the dividend by the divisor, D is greater than M. So, the objective is

to find a quotient that is the result of the division and of course a remainder; remainder R

should be less than this divisor M, and this M, D, Q and R are related by an a equation

like this.

Now, just if we ignore the remainder for the time being, D is Q x M. So, you see there

are basically two things that you are multiplying, and you get D. So, there is an analogy

you  can draw between division  and multiplication,  the operations  look quite  similar.

Here we are talking about dividend, quotient and divisor; and in multiplication we talked

about  product,  multiplicand  and  multiplier.  So,  there  is  a  correspondence  between

dividend and product, quotient and multiplicand, divisor and multiplier.

Now, this  correspondence  will  be clear  when we look at  the basic  data  path,  or  the

circuits that we use for division. If you compare this circuit with what we had used for

multiplication,  you can see that see this correspondence immediately. Because of this

correspondence very similar circuits and very similar kinds of algorithms can be used for

multiplication as well as division.
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So, let us just work out a simple example division using the traditional approach which is

sequential digit by digit, shift and add kind of thing.

This is quite similar to what we do using the so called pencil and paper approach. So, the

example we take is for a dividend D which is 37, divisor is 6; we are dividing D by M.

So, D we are writing here this is 37, 1 0 0 1 0 1 and this is my divisor 1 1 0 which is 6.

What we do in a normal division step, we see if divisor goes with the first 3 digit here it

is 1 0 0, if it goes I can subtract, but here we see that 1 1 0 is greater than 1 0 0 which

means it does not go, so what to do we set the next quotient bit to 0 if it does not go.

So, the next quotient bit is set as 0. Because it does not go we do not make any change to

the dividend, it remains the same next step. The divisor we shift by 1 place and repeat the

same process, we shift right by one step and we compare it with this 1 0 0 1. Now we see

1 0 0 1 is greater than this; that means, we can subtract which means it does go and the

next quotient bit will be 1. So, because it goes now, we can do the actual subtraction.

So, you repeat the same process. What finally remains here will be my remainder and I

have already found out my quotient. So, my quotient is 6 in decimal my remainder is 1 in

decimal.

So, you see here the steps that I have shown side by side. So, the quotient bit that we are

generating  for example,  Q1 equal  to 1 and this  divisor MI am shifting it  right  by 1



position, I am expressing it as 2 to the power -1 x M2. To the power -1 means divide by

2, and you recall divide by 2 means shifting the number right by 1 position. So, we are

doing exactly that here, similarly here we are shifting M right by 2 positions, 2 to the

power -2 means dividing by 4, here we are shifting with right by 3 positions, 2 to the

power -3 x M.

So, actually whatever we are trying to subtract it is actually the quotient bit multiplied by

2 to the power some -I x M. This partial remainders you can say R1 starting with R0, R1,

R2, R3 and finally, R4 you get we subtract these values from this R i’s this is what we do

here.

(Refer Slide Time: 13:16)

Just to recall exactly what we saw. We were computing the bits of the quotient one at a

time, and at each step what we are doing --- the divisor was being shifted I bits to the

right you see here it was 1 bit, 2 bits, 3 bits. So, I goes from 1 2 3, 2 to the power -1, -2,

-3 like this.

So, we shift I bits to the right; that means, we compute 2 to the power -I x M and this

compared with the current partial remainder whether it goes. If it goes then we set Qi =

1;  if  it  does  not  go  we set  Qi  =  0,  and the  new partial  remainder  is  computed  by

subtracting. So, if it does not go Qi is 0. So, actually this is 0 anyway. So, we do not

make any change Ri minus 0, but if it is 1 we subtract the shifted divisor 2 to the power

-I x M from Ri . 
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If  we want  to  implement  by hardware just  like  in  multiplication  algorithm we were

keeping the partial  product  shifted  and the multiplicand we are keeping in  the same

position, we are following the same principle here the partial  remainders we shall be

shifting,  but  the  divisor  will  be  keeping  fixed  in  one  position  that  will  help  us  in

implementing it in hardware.

So, here it is more convenient to shift the partial remainder to the left, but we keep the

divisor in a fixed location, which means in the earlier case we are doing something like

this --- we were shifting the divisor to the right and we are subtracting from the partial

remainder, but now we shall  be shifting the partial  remainder to the left; that means,

multiplying by 2, and we will be subtracting this divisor which is at a fixed location. So,

there is no 2 to the power -I here, just Qi x M; if the next quotient bit is 0, we do not

subtract anything, if it is 1 we subtract the divisor

But  here  the  only  one  change  is  there  because  we are  not  shifting  the  final  partial

remainder that remains. Actually to get the remainder from there we have to shift it right

by 3 places; this is the only correction we have to make.
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So, here we have an example worked out; that same example 37 divided by 6. Here you

see 37 is the dividend here we expressed in 6 bits and divisor is we see that whether it

goes 1 1 0 divisor is in fixed place you see 1 1 0 is in fixed place. So, it does not go. So,

we said the next quotient bit to 0 and no subtraction.

So, the partial remainder remains the same this is R1 we shift R1 to the left by 1 position

shift left. So, this becomes 1 0 0, 1 0 1 and a 0 goes in. Now you again try to subtract 1 1

0 from here, here it goes. So, the next quotient bit will be 1 you do an actual subtraction

1 1 and 0 and these 3 bits remain. This is my second partial remainder R2, shift it left

again 2R2. So, again you subtract the divisor it again goes 1 1 0 1 1 0. So, next quotient

bit is again one. So, you subtract this is R3, shift it left divisor try to subtract you see that

it does not go.

So, next quotient bit is 0, and you do not subtract and whatever was there it remains. So,

remainder is this. So, to get the remainder will have to shift it right by 3 positions that

was actually mentioned here. Remainder multiplied by 2 to the power 3 is actually what

you are getting here. So, this will be my quotient and this will be my remainder. So, one

thing you have seen from this example is that at every step we are checking whether the

divisor goes; that means, whether we can subtract it or not, but in an actual hardware

circuit how we shall check that whether it goes or does not go we can do it by making a

trial subtraction.



Let us do a subtraction and see that the result is becoming negative or not, if the result is

becoming negative then you can say that it does not go; if the result remains positive

then it is fine because we are talking about unsigned numbers, no negative number. But if

you find it does not go and you have already subtracted, we will have to add the divisor

back to restore the correction,  restore the original value.  So, a restoring step may be

required as the correction.

(Refer Slide Time: 18:59)

So, here as it said we do not subtract here we do not subtract here these 2 places, and the

concept that we are saying that we make a trial subtraction and then you can add it back

to make the correction step. When we see that it does not go, that can be very easily

implemented by using a hardware circuit or a data path as we can see in this diagram.

This diagram looks very similar to the multiplier data path, which is why we said that

there is a very strong correspondence. So, we have a temporary register A which will be

initializing to 0, the dividend we store here, and the divisor we store in another register

and this A is a this is An, n plus 1 bit register; one extra bit because we have to check this

sign after trial subtraction.

So, what we do from a at every step we do a trial subtraction of the divisor and check the

result  of the subtraction;  that  means,  the sign bit  is  0 or 1.  The control  unit  will  be

checking that. If it sees that the result is negative then it will again activate an addition

step. 



The divisor will be added back to A to restore back the value; that means, we have done a

subtraction wrongly we add back to restore the previous value. This is basically what we

are trying to do, and this whole process we repeat and in every step we shift dividend and

this a register left by one position, this was exactly what we are doing here right we are

shifting this every step by one position, one position, one position we do exactly the

same thing here right in hardware.

(Refer Slide Time: 20:54)

In terms  of the steps;  we have this  A register, Q register  and the divisor  in  another

register M. So, we shift the dividend 1 bit at a time into register A. So, both A and Q we

are shifting left, subtract divisor M from A; that means, M is aligned to A. We always

subtract M from A; this is our trial subtraction. If the result is negative which means it is

not going then we add M back to register A; this is the restoring step, and because it was

not going the next quotient bit; that means, last bit of Q we record as 0, but if the result is

positive; that means, it goes you do not do any restoration or addition and record 1 as the

next quotient bit.
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This can be depicted in the flowchart form as follows the same thing which we said this

you see we load A with 0, M contains the divisor, Q contains the dividend.

So, we start by shifting left AQ; that means, the first bit of the dividend gets into A and

we make a trial subtraction, this is your trial subtraction after shifting you make a trial

subtraction then you check after trial subtraction whether a is becoming negative or not.

If you say A is negative which means it does not go, in that case the last bit of Q, Q0 is

set to 0, and you add M back to A --- this is a restoration step. But if you see A is not

negative after subtraction, then it is fine --- you simply set the quotient bit to 1 and repeat

this n times. count was initialized to n, decrement by 1 as long as it does not reach 0; you

repeat this loop, if it reaches 0 you stop rght.

This is the basic restoration division algorithm. Now you see from this flowchart that you

are  looping  n  times,  now  every  time  you  are  starting  by  doing  a  subtraction  and

depending on the sign of a negative or positive you are either doing an addition or not

doing an addition. So, we can say that on the average we shall be doing the corrective

addition 50% of the time; that means, n/2 time on the average.
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So, this is the analysis. So, for n bit divisor an n bit dividend we iterate n times. So, every

time we carry out a trial subtraction; that means, there are n trial subtractions and on the

average number of restoring additions will be n / 2, because in the best case you will not

need any restoration 0 worst case it will be n.

So, average will be (n + 0) / 2 = n / 2. So, the total number of addition / subtraction will

be n + n / 2 here.

(Refer Slide Time: 24:13)



There is an example that is worked out here. I shall actually just work out this example

on paper just to show. Finally, you get the remainder and quotient let us work out this

example. So, we want to carry out a division operation 8 divided by 3.

(Refer Slide Time: 24:43)

So, what we do we start like this we have this A register. A is a n + 1 bit register; suppose

we are representing everything in 4 bits. So, A will be a 5 bit register, initialize to 0, and

side by side there  is  a  Q register. Q will  contain  the dividend 8 (1 0 0 0),  and the

multiplicand here M is 3. M in binary is 0 0 1 1. So, you start the operation. You will

have to make a trial subtraction from the first step. You subtract 0 0 1 1 from A. After

subtraction the result will be 1 1 1 1 0. What you see after subtraction is that the result is

negative; that means, the sign bit is 1, because your sign bit is 1 you will have to restore

it back; that means, you add 0 0 1 1 again to restore back the original value of course.

You have to start by making shifting. You first make a shift and then do this addition. So,

this will be a shift 0 0 0 -, and then you do the addition or subtraction. This continues.

So, this is how you can work out the algorithm step by step by hand.

Let us look into an improvement now, the restoration division algorithm that you have

talked about here what we have seen is that we are doing subtraction every time in the

iteration and on the average half a time we are also doing a corrective addition.
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Now, let us see if you can reduce the number of addition and subtraction our objective is

to carry out only one operation in every iteration --- total addition subtraction will be n

only. So, we make an observation that in the restoring division algorithm that you have

already seen what you are doing is if after the trial subtraction A was positive, we shifted

left and subtract M; that means, shift left means we are doing 2A, then we are subtracting

M shift left means multiplying by 2, but if A was negative we were first restoring it by

adding back M, then shifting and then again subtracting M for the next iteration.

So, this is done in the current iteration and again you go back next iteration you again do

a subtract. So, if you combine the two what it means is that this A + M is done shifted

left means twice of that, then subtract M. So, this is 2A + M. So, effectively in one case

you have been 2A - M, and in the other case we are doing 2A + M. So, if we can modify

our algorithm by making this observation then we can reduce the number of operation;

this method is called non-restoring division.
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So, let us see what we do here we similarly start by initializing register a to 0 and repeat

these steps b, c, d n number of times. The method is simple; if A is positive you shift A

and Q left by 1 position and subtract M from A, but if it is negative you add M to A. This

was the observation; in one case we subtract M other case you add M, then you check if

after this addition or subtraction A is positive or negative, if it is positive set the quotient

bit to 1 else set the quotient bit to 0.

Now, see  here  we are  including  one  additional  subtraction  that  is  there  in  the  next

iteration with this operation. So, for the last time there may be an addition subtraction

operation which we have carried out. So, we may have to carry out a corrective addition

only at the very end. So, that we are doing here if at the very end A is negative; that

means,  we have  carried  out  a  wrong last  subtraction  we have  to  make  a  corrective

addition at the end.
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In terms of flow chart,  I  just showing it diagrammatically like this.  We initialize the

registers as earlier, we check A is negative or not; if yes we shift left and add, if not shift

left and subtract. Then we check whether A is still negative or positive; if it is negative

the quotient bit is set to 0, or else quotient bit set to 1. This thing you repeat n times and

after you complete n times you check finally, whether A is still negative or not, if it is

still negative you have a corrective addition step.

(Refer Slide Time: 35:39)



This is what the algorithm is. So, here again I shall be working out this simple example 8

x 3 by hand. So, the same example I will be taking I am just showing this animation first.

So, let us work this out again.

(Refer Slide Time: 35:59)

So, here just exactly similar to what we did for the restoring division we start with this

register A containing all 0’s and register Q containing the dividend. You recall our divisor

was 3 which was 0 0 1 1 this was M. So, according to the algorithm, we shall be starting

by checking whether A is negative or not. accordingly we do a shift and then addition or

subtraction.

So, we are doing that same thing. So, we are seeing that the number is positive. So, we

will be doing a shifting and then a subtraction, if you do a shifting this becomes 0 0 0 0

this 1 comes here this will be 0 0 0 -, this is your shifting then you do a subtraction,

subtract M from this minus 0 0 1 1. So, this result will be 1 1 1 1 0 and this 0 0 you see

after subtraction your sign is 1. So, your next bit here will be 0. So, this one will decide

the next quotient with 0. You see the flowchart once more that here we do a subtraction

and after subtraction we check whether A is negative or not, when if it is negative we set

Q0 to 0.

So, because it is negative we are setting Q0 to 0. So, let us continue with this. We have a

shift step, we have a subtract step --- this is your cycle 1. So, you repeat this step shift

left again 1 position, now this is 1 that is how you have to shift, and add if it is 0 we will



be subtracting if it is 1 we will be adding. So, we do a shift first it will be a 1 1 1 0 0 this

0 will come in 0 0 0 dash and we will be doing addition here plus 0 0 1 1. So, this will be

1 1 1 1 1 and 0 0 0 see here again you see that the sign is one. So, the next bit that will be

coming in the quotient will be 0 just like in the previous case.

The  process  repeats.  So,  you  see  this  step  by  step  we have  seen  how the  restoring

division algorithm works.

(Refer Slide Time: 42:12)

Regarding  the  data  path,  it  is  exactly  identical  to  what  we  saw  for  the  restoring

algorithm. There is no difference and the same hardware can be used; only your control

unit  will  be different.  The advantage  is  that  we need only  n number  of  addition  or

subtraction steps here.
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Now, if we want to go for high speed division, some of the methods that we have already

seen to design high speed multipliers can be used here also, like you can use high speed

adders and subtractors using carry look ahead adders, carry select adders etcetera.

We can  use  high  speed  shifters  like  barrel  shifters,  we can  use  combinational  array

dividers which are similar to combinational array multipliers, and they means actually

can implement the restoring division algorithm. But the problem with division algorithm

is  that  you  can  do  it,  but  it  is  extremely  uneconomical  and  ineffective  to  build  a

combinational array kind of a divider. The other thing is that by including sign in the

division  process;  signed  division  algorithm is  not  easy  normally,  it  is  done  using  a

separate step by separately checking the sign bits and making a corrective step at the end

to correct the sign of the product.

So, signed division is again a problem. The main difficulty that you have seen earlier in

the very beginning of the lecture we said that for division the latency as well as the

number of cycles per issue are very high. That is mainly because of the difficulty in

implementing the division algorithm in a pipeline. Multiplication can be very effectively

implemented in a pipeline in a Wallace tree kind of a multiplier, that is how you have

seen that the number of cycles per issue for multiplications can be as low as 1. E;very

cycle you can feed a new data to a multiplier and the total latency will be 3 it takes 3

cycles to complete the multiplication.



But for division it is not so, division still remains the bottleneck. So, as a programmer

whenever you are developing some applications or programs you should keep it in mind

that  division  is  an  expensive  operation,  and  you  should  replace  division  by  another

arithmetic  operations  wherever  possible.  This  can  increase  the  effectiveness  of  the

program or application in terms of speed and performance.

In the next lectures we shall be moving on firstly the floating-point operations. So, how

you  can  extend  whatever  we  have  learned  so  far  to  handle  floating  point  numbers,

numbers  with  decimal  points  and  suddenly  we  shall  be  looking  at  other  logical

operations  how everything can be integrated within the arithmetic  logic  unit.  So,  we

come to the end of this lecture.

Thank you.


