
Computer Architecture and Organization
Prof. Indranil Sengupta

Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur

Lecture - 35
Design of Multipliers (Part I)

In the last couple of lectures we had looked at various kinds of adders. So, how they can

designed, and some comparative study among them. In this lecture first we shall be

looking at some aspect about addition which we have not talked about yet; namely

generating so called conditional flags, and then we shall be moving on to design of

multipliers.

(Refer Slide Time: 00:57)

In this lecture we shall be stating with generating the status flags. Now what is a status

flag? In many conventional processors if you look at the instruction set architecture, we

will find that they have some specific condition flags like sign flag, zero flag, overflow

flag, and so on. These flags are automatically set as a result of some arithmetic or logic

operations; like for example, you can do an addition, and after addition you can compare

whether the result is negative or positive. This you can do by checking whether the sign

flag is 0 or 1; or you can check if the result is 0, this you can do by checking whether the

zero flag is 0 or 1.

There are a set of flip-flops or one bit registers. The flags they are automatically set or

reset depending on the result of some previous operation. So, after that you can use a

conditional branch instruction; for example, to check the status of the flag and take some

decision accordingly.

We shall be talking about four of the commonly use flags, then several other flags also

used in some machine; this Z flag tells whether the result is 0 or not. Normally this flag

is set by both arithmetic and logic operations; S flag tells whether the result is positive or

negative. So, for 2’s complemented representation, a 0 will mean positive; 1 will mean

negative.

That means, the most significant bit of the result is the same as the S flag, and this flag is

set for both arithmetic and logic operations. Typically carry (C) already we have seen in

adder; how carry is generated from one stage to another. This flag will tell whether there

has been a carry out of the final most significant stage. And this carry information is used

only for arithmetic operations. And lastly there is a flag called overflow (V) that tells

whether the result is too large to fit in the register. It is used for arithmetic operations,

typically addition and subtraction sometimes also multiplication.

(Refer Slide Time: 04:05)

We will see these things one-by-one; so generation of this flags is not difficult rather

easy. Let us consider very simple typical scenario like this, where we have an arithmetic

logic unit which takes as inputs from two registers A and B, and the result is stored into

another register F. Let us assume all of them are n bit registers. Firstly, the Z flag can be

very easily generated by using a single n-input NOR gate. So, what is the NOR gate? The

output of NOR gate will be 1 if all the input are 0. So, if all the bits of the result are 0,

the output NOR gate will be 1; that will indicate the Z flag.

So, actually the circuit will be like this, you have a large NOR gate.

(Refer Slide Time: 05:03)

So, the input from the result register F is fed here, and the output here goes to a flip flop.

This is a Z flip flop, let us call this input Q. So, this will loaded by some control signal

and once loaded, this Z flag will be available. Similarly the S flag can be generated

directly from the most significant bit of the result; just take this Fn-1 and feed it to S flip

flop. So, generating this sign flag is also very easy.

This ALU will also be having a carry out signal, that carry out signal will be directly

going into the C flag flip flop. Now talking about overflow, see here we are talking about

overflow during addition and subtraction. Overflow can occur during addition only when

the sign of the two operands are the same. Now if one of the number is positive and the

other number is negative you can never have an overflow. Let us take a very simple

example of a 4 bit representation.

So, in 4 bit in the positive side I can represent maximum 0111, which means +7, in the

negative side I can represent 1000 which means -8. So, let us say I am adding +5 and +4.

Now quiet naturally the some of the numbers will not fit in 4 bits because maximum you

can store is 7.

So, one observation is the sign of the numbers is positive, but the result has become

negative. You look for two negative numbers, same thing will happen. Let us take -5 and

-4. Now here also we see that the sign bit of the original numbers were 1, but the sign bit

of the result has become different. This are the condition for overflow detection.

Now one thing we are not considering overflow for division operation at present.

Because in multiplication normally when we add two n bit numbers the product is stored

in a 2n bit register.

(Refer Slide Time: 09:46)

So, there can never be an overflow there. So, for that purpose for the time being we are

assuming that overflow is important only for addition and subtraction, and not for

multiplication.

Now, again talking of the flag registers, the MIPS architecture that we have been

studying does not have any status flags at all. Why? Because the instruction set of MIPS

was designed primarily for very efficient pipeline implementations. Now we will be

studying this in much more detail later, that when there are several instructions which are

running in a pipeline they are in various stages of execution. Now if there is a single set

of flag register there can be confusion; the first register may be setting the Z flag, the

second register may also be trying to set the Z flag. So, there can be some confusion. So,

for a pipeline implementation existence of the flags create something called side effects,

which are undesirable.

So, MIPS uses an entirely different philosophy. They do not use any status flags; rather

they temporarily stored flag information in a general purpose register. I am showing

simple example; there is an instruction called set less than (SLT). What it does is it will

check if S1 is less than S2 or not? If so, then the target register will be set to 1; otherwise

this target register will be set to 0. So, you are storing either a 0 or a 1 in the target

register. So, as if the whole target register your are using as a flag, and immediately after

that you can have an instruction like a BEQ, where you are checking whether the result is

0 or not; 0 means this was not less than; then you jump to a label.

So, earlier what you do? Earlier you do branch if not zero jump to a label, but now since

you do not have a flag register you have to use one of these set instructions first, then use

a conditional branch instruction checking the value of the target register whether is 0 or

nonzero.

(Refer Slide Time: 12:22)

Let us now come to multiplication. Talking about multiplication of unsigned numbers the

first thing is that the amount of hardware required for multiplication is substantially

greater as compared to addition. Multiplication of two n bit numbers can generate 2n bit

product. We are following a method that is very similar to the pen and pencil method we

are familiar with. So, when you multiply two numbers using this so-called decimal

number system, we follow a very similar approach. So, what we do? Let us say this is

our multiplicand this is our multiplier all expressed in binary; they are unsigned

numbers, not 2’s complement.

So, I check the first digit of the multiplier. We multiply 1 by this, you get 1 0 1 0, then

shift one place left; multiply by 0 with this we get 0 0 0 0; multiply by 1 with this shift,

multiply 1 with this shift, then finally you add all the bits up. So, the product is 130; you

see that the product requires 8 bits. So, this one example shows that when you multiply

two 4 bit numbers, your result may become double of that --- 8 bits.

So, the product can be 2n bits, and this method have a addition is called shift and add.

So, we do repeated additions of shifted versions of the multiplicand; because here you

are only multiplying by 1 or 0. So, one may this same multiplicand will be appearing 1 0

1 0 1 0 1 0 1 0 1 0 after various number of shifting. So, either we can write down all

these partial products and then add them of together, or you can continuously go on

adding as the next one is generated.

(Refer Slide Time: 15:05)

I am writing this in a very general term; this Ai and Bi can be 0 or 1. So, B0 it can be 0

or 1 is multiplied to all this 4 bits. B0.A0, B0.A1, B0.A2, B0.A3. Similarly with B1, B2

and B3. Each of these products we have shown here is called a partial product; now for

adding to 4 bit numbers if you can just check there are 16 partial products.

So, for multiplying two n-bit numbers, there will n2 partial products. To generate every

partial product you need just an AND gate.

(Refer Slide Time: 16:37)

Products generated by AND gates, you add them in a suitably. You will be needing a

complex adder circuit to add so many partial products together. So, you need a lot of

hardware.

From this basic principle let us try to come up with the simple hardware implementation

of an adder; this is called a combinational array multiplier. So, what we are doing? We

are using something called a multiplication cell. So, whatever the process we just now

shown here shift and add generating the partial products, you are directly trying to map it

in hardware. We are using an array of cells like this.

We are not waiting till the end to add all the partial products, we are adding the partial

product at every stage. This AND gate generates the partial products and this full adder

will be adding this partial product with another partial product coming from the previous

stage after shifting, and this full adder will be getting a carry input it will generating a

carry output, and this will be a generating a SUM.

(Refer Slide Time: 18:06)

It will clear if you see this schematic diagram how it is done. Here for 4 x 4

multiplication I am showing, there will be 16 such cells. So, diagonally from the right the

bits of the multiplicands are coming m0, m1, m2, m3; that means, same bit is also

coming here going to the next stage. So, the m0 is also going to the next stage, m1 is also

going to the next stage, m2 and m3, and from the other side the quotient bits are applied

q0, q1, q2, q3 it is from this side.

So, the quotient and the multiplier if you just AND them, you will getting the partial

products; so that partial products are getting added you have a ripple carry adder. Thes

full adders are all connected in cascade. So, initially the input is 0 0 0 0 0; if first partial

product is getting added to 0 you get the partial product here.

Next one: so the way this multiplier is designed there is automatically a one bit left shift

you can see. Next stage is computing the partial products can adding to the previous one,

next one is computing a next partial product after again one bit shift adding to the

previous one, in this why it goes on. So, finally, at the end whatever you get will be the

product.

This method is very simple; whatever you are doing by hand you have directly mapped it

to hardware, but the problem is that this kind of a multiplier is extremely inefficient, it

requires extremely large amount of hardware; that means, you need n2 such cells, but the

advantage is that it is much faster.

(Refer Slide Time: 20:36)

So, we have seen the multiplication method that is called combinational array multiplier.

So, it is a combinational circuit. After some delays the result will be generated. Now we

look at some multiplication methods which will be requiring much less amount of

hardware, but will be sequential in nature; means you will have to run the circuit for

several clock cycles, to complete the multiplication.

So, let us look at unsigned sequential multiplication first. So, exactly what we have said

is that requires much less hardware, but requires several clock cycles. Much less

hardware means what? Earlier for combinational array multiplier we are using n2 cells.

So, the hardware complexity was O(n2), but here we are saying would be needing

hardware which will be proportional to the number of bits being multiplied and also the

time require you also be O(n).

Now, in hand multiplication what we have seen? You have seen that if the bit of the

multiplier is 1, we shift the multiplicand by one bit position, and add to the partial

product like I am just showing an example here.

(Refer Slide Time: 22:10)

Let us multiply 0 1 0 1 with 1 0 1 1. First with this one line multiply, this becomes 0 1 0

1, then with this one and multiply with one shift 0 1 0 1 I; immediately add them then

comes this 0 0 means he again shift and add 0 just immediately, add them, last 1 0 1 0

one just again another shift 0 1 1 0, this is your final product.

So, you are shifting multiplicand by variable amount, but the relative position of the

partial product you are not changing. The bit positions are changing, kept in the same

position, but for actually implementation we will be doing something else, instead of

doing this will be making a small change.

(Refer Slide Time: 23:33)

We do not shift the multiplicand, will keep the position fixed; rather the partial product

will be shifting right at every step. Like here you are keeping the partial product same

and shifting the multiplicand left every step, what was saying will keep the multiplicand

in the same place partial product will be shifting right. So, these two are equivalent. So,

either you keep this in the same place and shift this left, or keep this in the same place

and shift this right. So, we are following the second order because it is easier to

implement in hardware.

(Refer Slide Time: 24:15)

This shift and add multiplication the overall steps in the form of flow chat is shown here.

See here the idea is as follows we are computing something like a partial product.

(Refer Slide Time: 24:40)

You see we are using some registers A, M and Q. Normally registers A and Q are

consider together; initially A will be loaded with all zeros and Q will be loaded with the

quotient. We will be shifting this to the right, and whenever we have to add the

multiplicand will be adding here, the M will be added into this position and this whole

thing will be shifting right. This will be the principle we will be following.

So, we start by initializing this A register to 0, C is a carry bit = 0, count is the number of

times n, M is multiplicand, Q is multiplier. So, I am assuming M and Q are both n-bit., A

is a n-bit temporary register initialized to 0, and C is the carry out from an adder.

So, what we do we check the last bit of the quotient Q0. If it is 1, we have to add; if it is

0, we are adding A0 right in the shift and add method. So, you look at the last bit Q0. If

the Q0 bit is 1, you add the multiplicand to A. So, C A Q together will be shifting right.

So, we are doing an arithmetic shift right C A Q, and then decrementing the count by 1.

We are checking whether count is 0 or not if it is not 0 we go back, if it is 0 we stop.

(Refer Slide Time: 27:13)

I am illustrating with help of an example. Let us consider two 5 bit numbers, 10 and 13.

10 in 5 bits is this, 13 in 5 bits is this. So, the product is expected to be 130. So, initially

my A is 0, Q contains the quotient 0 1 0 1 0 0 1, and the carry bit is 0. So, what we do is

check whether Q is 0 or 1; I say it is 1. So, I have to add multiplicand M to this. So, I do

A = A + M. This continues.

We have to check the bits one by one. So, again I check this, this is 0; so now, will have

to add 0. So, there is no change in A, and again we do a shift right. So, the next bit of the

quotient comes here, 1 you add M1 again to it. So, 0 1 0 1 0 plus 0 0 0 1 0 it becomes 0 1

1 0 0 this you can check and you do again you do a shift. So, this one comes here finally.

So, you check this. So, you again add M to this 0 0 1 1 0; it becomes 1 0 0 0 0. So, again

do a shift last time we check this bit the last bit 0. So, you add 0 no change in shift this is

your final result.

So, you see the quotient which I had add loaded initially in this register has slowly

shifted out, and is replaced by the product finally. So, at the end I had made 5 shifts. So,

the quotient bits have gone out. So, the result does not contain the quotient bits any more.

So, after addition shifting, addition shifting, addition shifting they will slowly fill up this

whole 10 bit register, and this is the product.

(Refer Slide Time: 29:48)

Now, in this example the carry bit was never 1. Let us take another example where the

carry bit can be 1. Let say we multiply 29 and 21; these are the two numbers the product

is supposed to be 609. This same way you look at one you add the multiplicand 1 1 1 0 1

then do a right shift next bit is 0. So, you add 0 no change then do a right shift 1.

So, after shift this carry will get shifted in here right then you check again the next bit 0

no addition; that means, you are adding 0, no change again shift next bit is 1, the last bit

you again add M to it, you again get a carry out of 1, again shift right this one will again

go in and this will be your last and final result 609.

So, this is how the basic shift can add multiplication works.

(Refer Slide Time: 31:05)

Now talking about the hardware circuit for (Refer Time: 31:12) it is very simple. What

we shown in the example we need exactly that. We need a register for A, we need a

register for Q, we need a carry flip flop, and they will be connected as a shift register, we

need an adder with one of the inputs coming from M, and the other input either coming

from the multiplicand or 0.

And are all n bit registers A Q and M; the last bit of Q is Q0, and there will be a control

unit that will be checking Q0 at every step. And will be selecting a multiplexer

appropriately; either it is selecting 0 or M. And also it will be generating control signal

for the other part. So, means after addition the shifting will be going on, it will keep track

of how many times it will be repeating. So, control unit will be doing that. The data path

as you can see is very simple; other than the registers you need just an adder and a

multiplexer, and just one flip flop, carry.

So, with this we come to the end of this lecture. In the next lecture, we shall be looking

at some other methods of multiplication, particularly signed multiplication, how we can

multiply two sign numbers and some improvements therein.

Thank you.

