
Computer Architecture and Organization
Prof. Indranil Sengupta

Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur

Lecture - 34
Design of Adders (Part II)

We continue with our discussion on Adders. If you recall in our last lecture we looked at

one kind of adder called ripple carry adder. And in the ripple carry adder we have

observed one very distinct characteristic; that in the worst case the carry input ripples

through all the stages up to the final carry output. This results in an overall worst case

delay of the adder that is proportional to the number of bits or the number of stages.

(Refer Slide Time: 00:59)

So, we continue with our discussion. What I just now mentioned is that the ripple carry

adder that we have seen so far has total propagation delay in the worst case proportional

to n, and the primary reason was the rippling effect.

Suppose I consider the full adder at any particular stage; full adder is unable to start the

addition until or unless its carry input is available. Now in the ripple carry adder this

carry input is coming sequentially through a rippling effect, because of that the different

full adders was having to wait till the carry input comes. So, this second approach is

another kind of adder that we look here is called carry look ahead adder. So, as the name

implies we are doing some kind of a look ahead to determine the values of the carry.

If you can do that, then the total time complexity of the adder can reduce from order n

which is roughly proportional to the number of stages to order 1 which means addition

can be done in constant time independent of the number of stages, but this is possible if

somehow we can generate the carry bits in parallel. If you can do that then all the full

adders can perform their addition simultaneously. Here there is no need to wait for the

previous full adder to complete; this is the basic idea behind the carry look ahead adder.

But the only trouble here is that the hardware complexity the amount of gates that will be

required will increase rapidly with the value of n. This is the drawback of carry look

ahead adder.

(Refer Slide Time: 03:18)

So, let us see the basic idea, we look at a full adder in terms of how it works let us

consider the full adder in the i-th stage of a ripple carry adder say where the inputs are Ai,

Bi and Ci and the outputs are Si and Ci+1 . Now we define 2 different kinds of events one

we call as the carry generate, other we call the carry propagate. The idea is similar to full

adder.

(Refer Slide Time: 04:01)

Let us consider full adder at stage i. So, the inputs are Ai and Bi , sum is Si and input carry

is Ci and the output carry is Ci+1. Carry generate means that this full adder will be

generating a carry; meaning Ci+1 will be 1 independent of what has happened in the

previous stage.

So, I do not care what the value of Ci is; Ci can be 0, Ci can be 1 whatever it depends on

the previous stages, but this Ai and Bi are the present inputs from the numbers which are

coming. So, we can say if Ai is 1 and Bi is 1 then definitely there will be a carry out this

will imply Ci+1 will be 1. This is the scenario for carry generate a carry is generating in

the i-th stage itself irrespective of what has happened in the previous stage. So, you see

the generate function Gi is defined as Ai and Bi.

The second scenario is called carry propagate. Suppose my input carry has come as 1.

So, my question is under what condition this input carry will be propagating to the

output; that means, Ci+1 will be equal to 1 given Ci equal to 1 what are the other

conditions for that? This carry will be propagated under the condition when Ai is 1, Bi is

0 or Ai is 0, Bi is 1 because you add this 1 to 1 and 0 it will generate a carry you add this

1 to 0 and 1 it will also generate a carry. So, this condition actually talks about the

exclusive OR function.

So, the carry propagate function is defined as AiBi. So, this is what I have explained so

far Gi equal to 1 represents the condition when a carry is generated in this stage itself

independent of the previous stages, and propagate function will be 1 when an input carry

Ci will be propagated to the output carry Ci+1. Now with respect to this Gi and Pi sub

functions we can write down an expression for Ci+1. we can write the carry output will be

1 if either a carry is generated or the propagate function is true and there was an input

carry. So, if either of these two conditions are true then Ci+1 will be 1. So, I can simply

write down the expression for this Ci+1 in terms of Gi and Pi like this.

(Refer Slide Time: 08:29)

Now, this is like a recurrence relation, I am defining the C i+1 in terms of the input i. So, I

can recursively expand this function like Ci+1 is Gi + PiCi; in a similar way this Ci we can

expand as (Gi-1 + Pi-1 Ci-1) , again I have a Ci-1 ,expand the Ci-1 as Gi-2, plus Pi-2Ci-2 multiply

them out; you continue this multiplication process till you reach C0. So, in the last term

where there is C0 will be containing the product of all the P’s.

And there will be several other terms with Gi-1, there will be a single Pi, Gi-2 there will be

2 Pi’s, Gi-3 there will be 3 Pi’s and so on. So, it can be expressed in the form of expression

like this. So, if you work this out you will see that this expression and this generalization

they mean the same thing. So, actually I am working this out for a specific case for a 4

bit adder.

(Refer Slide Time: 10:06)

Let us do it. So, let us consider a 4-bit carry look ahead adder where using the same

expressions whatever we have written down here. So, using the same expression C4 can

be written as G3 + G2 P3 + G1 P2 P3 + G0 P1 P2 P3 + C0 P0 P1 P2 P3; this actually follows

from this way expression. C3 can be similarly expressed like this, C2 can be expressed

like this, C1 can be expressed like this.

Using the carry propagate functions, the sum outputs can be expressed as shown.

 (Refer Slide Time: 12:46)

Now, if you do this what you are actually gaining; let us try to understand in normal

ripple carry adders that have seen earlier.

So, the inputs were coming; carry in was there, and carry outputs were rippling through.

So, if this was your input carry C0. So, C1, C2, C3 and C4 --- because of the rippling

effect we have to wait till the carry input was available then only it can do the

computation and generate the sum. Now you see what we are saying is that we propose

to design a separate combinational circuit that will be directly generating the C1, C2, C3

and C4 values, and then we will be having 4 full adders; they will be fed with the A,B

inputs as usual, and the third carry input can be directly fed from here. So, you see there

is no ripple effect between the full adder stages.

So, after these carries are available, you need just an XOR function here; that means, just

a 3 delta delay. So, when all the sum will be available, this will be independent of the

value of n, this is what we try to show in these expressions. So, if we use these

expressions to generate a combinational circuit we can directly generate C1, C2, C3, C4,

and if we can do that we can directly feed those carry inputs. So, we do not need the full

functions of the full adders; we need just XOR gates to generate the sums, and this can

be done in parallel with no rippling effect.

So, this expression can be simplified; you just look at it one thing this sub expressions

G2 G1 P2; this one is appearing here. A lso if you take P3 common from these four

terms, you will see that this same sub-expressions appearing.

(Refer Slide Time: 15:39)

So, if you substitutes C3 here, this expression gets simplified to C3 P3, and if you do the

simplification the advantage you gain is that see here you needed 3 AND3 gates and 2

AND4 gates; here the number of gates are reducing.

(Refer Slide Time: 16:11)

So, your circuit becomes simpler. So, if you simply realize these functions your circuit

will look like this. So, suppose I have my Pi Gi functions, you can generate the carries

using this kind of a 2-level circuit and you recall that Pi is nothing but the XOR of the

inputs; that means, 1 XOR gate and Gi is nothing, but the end of the input; that means, 1

AND gate. So, you need this much hardware, but one problem is that if we look at this

recurrence relation; as the number of n increases this the complexity of this function C1,

C2, C3, C4, C5, C6 they will go on increasing.

So, the number of gates will also increase. So, it will become increasingly difficult to

implement or realize the function. So, you may know that as the number of inputs the

size of a gate increases, the delay also increases very rapidly. So, you need to control the

number of inputs limited to a small value, 2 or 3 let say. So, this is one drawback.

(Refer Slide Time: 17:38)

So, the circuit of this 4-bit carry look ahead adder will overall look like this; there will be

one circuit which will be generating Gi and Pi.

(Refer Slide Time: 17:55)

How just as I have said Gi is nothing but AND; Pi is nothing but XOR. So, how much

delay will take? This XOR takes a delay of 3 delta as I said earlier.

AND gate is a single gate delay. So, the worst-case gate delay is 3 delta. So, this Gi and

Pi generator requires the time of 3 delta to generate all the Gi, Pi values. And this 4 bit

carry look ahead circuit will look like this; you say this is just a 2-level AND-OR circuit,

but if you implement like this the delay increases, but you implement it in the original

form, it becomes worst-case delay of 4 for generating C4, but I am assuming the

previous approach where you are not doing that simplification. So, it will be 2 delta, but

using the simplification this will become 4 delta.

And once you have done this all the carry values are available in parallel. So, you simply

do an XOR with the P values to generate the sums, and this XOR again will require 3

delta. So, you see after a constant time of 8 delta, you have generated the sum bits in

parallel. So, that is why we mentioned earlier that we are aiming to reduce the addition

time from O(n) to O(1); that means, proportional to n to constant time addition. So, carry

look-ahead adder helps us in doing this.

(Refer Slide Time: 19:48)

But 4-bit is too less a number. Let us say we want to design a 16-bit adder; having a

single 16-bit carry look ahead adder will become impractical as I have just now said;

because the expression for the carries will become exceedingly complex.

So, the product terms will become larger in sizes, number of terms will also become very

large requiring a very large OR gate. So, one alternative may be you can have as a basic

building block of 4-bit carry lookahead adder modules, just like the once you have

designed. They will be taking 8 delta time for addition, and you chain them just like a

ripple counter between these stages. So, this is a mix of carry look ahead and ripple carry

adder. So, every 4 bit you can do in parallel, but this C4 will be generated only after you

just recall these carries will be generated only after 3 delta + 2 delta = 5 delta time. So,

you will have to wait that time for the carry to be generated; similarly C8, similarly C12,

similarly C16.

So, unless C4 is available you cannot start addition here, unless C8 is available you

cannot start addition here, but of course, you can do this Gi, P i generation in parallel, but

for this carry look ahead circuit you have to wait 2 delta, and only after that carry look

ahead circuit C4 will be generated, C8 will be generated, C12 will be generated. So,

carry propagation between modules is still slowing down the adder here.

(Refer Slide Time: 21:48)

So, we propose that we use a second level of carry look ahead like you see here. We have

4-bit carry look ahead modules, and inside these modules we have a circuit like this. So,

we already have Gi, Pi generator and carry look ahead circuit.

So, what we are saying is that at a higher level let us have another carry look ahead

circuit for which you can derive the equations in a similar way, that will be generating

C4, C8, C12 and C16 in parallel in constant time. So, in that case you can have a 2 level

carry look ahead adder module, this is what we are saying here use a second level of

carry look ahead mechanism to generate the input carries for the carry look ahead blocks

in parallel, and this second level block will be generating the carries C4 C8 C12 and C16

together in constant time, but if n is larger maybe you will be requiring more number of

levels.

Let us say I need a 64 bit adder, I build 4-bit modules and combine to build a 16-bit

adder, 4 such 16-bit adders with another 4-bit carry look ahead module I can use to build

up 64-bit adder. This is how so-called fast adders are built in many of the recent

computer systems. So, delay calculation is fairly simple for original single level carry

look ahead adder for 16-bit, the delay was 14 delta, but for 14 delta means I am talking

of this circuit because this carry generation will take 2 delta additional time because of

this carry look ahead time 2 delta because this Gi, Pi can be generated in parallel and it

will become 14 delta.

If you do a calculation, but if you do this modified form then you need only 10 delta. So,

I am not showing the detail of this 2 level multi-level design; conceptually the idea I

mentioned talking of a general k-bit adder, I am showing a quick comparison with a

ripple carry adder.

(Refer Slide Time: 24:18)

And a carry look ahead adder with this kind of 4-bit 4-bit look ahead. 4-bit look ahead

means I am just repeating once more that my idea is like this.

(Refer Slide Time: 24:37)

So, I will be using carry look ahead adder, four CLA4 blocks; that means, 4-bit carry

look ahead adder. So, I use a higher-level carry look ahead module for this will be

parallely generate these carries. So, what I have now is a block which I can call as

CLA16 16-bit adder.

So, I can have 4 such blocks 16-bit adders, and above that I can have another higher level

4-bit CLA module. So, these will be generating the carry inputs for these high level

adders. So, in multiples of 4 I can do, in 4 bits, then 16 bits, then 64 bits, then 256 bits,

and so on. This means assuming that 4 is a reasonable number, beyond 4 it will be too

expensive to construct a carry look ahead adder this is our assumption. So, from this

calculation the delay for a carry look adder comes like this 6 + 2 log n to the base 4 if

you make a simple calculation it will come.

And this will be the number of look ahead stages So, if I compare you see therefore,

ripple carry adder as n increases the delay increases rapidly, but for carry look ahead

adder it does not increase that much appreciably; it remains more or less in the same

order.

(Refer Slide Time: 27:01)

Now, let us look at an alternate kind of an adder called carry select adder; this is more

like a philosophy that can make addition faster. Because the hardware is quite

inexpensive today, here we are using 2 adders for every addition, let us say we use two

ripple carry adders, and in addition we use a multiplexer.

So, why you are using 2 adders? Because the idea is that we do not know the input carry

let us say. So, it will take some time for the input carry to be generated. So, I take two

adders; the two adders are parallely adding the numbers, first one is assuming that the

carry is 0, second one is assuming that the carry is 1. So, we are generating the two sums

later on when the carry is known. So, one of the two sums can be selected by using a

MUX only after a MUX delay that is quite fast; this is the basic idea.

(Refer Slide Time: 28:10)

So, I am showing a schematic diagram of a 4-bit can select adder. You can see, here I am

assuming there is a ripple carry adder kind of a thing; 4 full adders, there is another

adder; the first one is assuming carry in is 0, second 1 is assuming carry in is 1.

So, the two full adders are generating the sums; the first one is this orange one, and this

is brown. So, the two additions are fed to a chain of 2 to 1 MUX. Later on when the

actual value of carry in gets known, by that time the full adder operations are already

done. So, you can simply select the MUX and take out one of the 2 addition sums that

you have calculated; similarly the carry out.

So, either you take carry out from here or carry out from here depending on the value of

Cin. So, this is what carry select adder means. Basically you are trying to save time by

carrying out 2 additions both with a carry in of 0, and other with a carry in of 1, and then

later on you select one of the 2 sums based on the actual carry which is generated.

(Refer Slide Time: 29:35)

So, let us take 2 example cascades. So, here we are showing how a 16-bit carry select

adder can be generated by a cascade of 4 such 4-bit adders. For the least significant stage

you do not need a carry select adder because you know the carry in already. So, there is

no need of any speculation it can be 0 it can be 1. So, the last stage there will be a single

ripple carry adder, but in the only other stages there will be a module like the one we

have explained. Now you see so after the addition time of a 4-bit adder is done. So, all

these adders are ready with their sum outputs. So, this adder is also ready with its carry

output.

So, once it is done you select the MUX; take out the correct sum select this MUX, take

out the correct sum, select the MUX take out the correct sum. So, it is just a chain of

MUXs; it is quite fast --- MUX means may be 2 gate delays. So, the total time will be the

addition time of a 4-bit adder plus the total delay of this MUX; after that time you will be

getting all these some bits in parallel. Now there is an alternate way that can make the

performance even better. You can make these adders of variable sizes like this.

(Refer Slide Time: 31:09)

The idea is that there is no point in having all 4-bits; you see 2-bits is a minimum time

you need for this carry to propagate to this MUX. Now by the time this MUX propagates

the signal, this 3-bit addition is also done by the time this MUX propagates the signal

this 4-bit addition is already done.

So, like this you have to make a calculation of the full adder delays and also the MUX

delays, and come up with an optimum configuration this is a so called 2 2 3 4 5, 2 2 3 4 5

configuration. For a 16-bit adder by optimizing the sizes you can actually minimize the

overall addition time.

(Refer Slide Time: 32:09)

So, the last kind of adder that we look at today is carry save adder. The concept is very

simple, in a carry save adder we are adding 3 numbers together. If there are more than 3

numbers, to add then you have to construct a tree of such adders. The carry save adder is

basically an independent array of full adders, and only in the last stage we need a parallel

adder.

(Refer Slide Time: 32:44)

Let us take 2 examples; that we want to add 2 numbers X and X. Let us say we add it

twice, here we are generating only the sum without any carry propagation independently

like the 3 numbers X, Y, Z we are adding together.

Later on what we do this sum and carry which you have generated like this. We do a shift

of this carry and add them up together this sum and carry, and will be getting the final

correct sum. So, we are saying is that we are not unnecessarily carrying out carry

propagation, we are having carry and sum as 2 separate words, and later on we are

adding them together after proper shifting like 1-bit shift carry will be shifted by 1 place

you can add them together.

(Refer Slide Time: 34:03)

So, a carry save adder technically is just a set of independent full adders without an

interconnection because there are 3 inputs A, B and a carry in. So, technically a full

adder is able to add 3 numbers X, Y, Z and is generating sum and carry as the outputs.

(Refer Slide Time: 34:24)

So, some examples I am showing here for m = 3; you can use a single carry save adder to

add the 3 numbers generate this sum and carry, the last stage use a parallel adder to add

them up to get the final sum. Let us say m = 4; you use 1 carry save adder to generate 2,

to add 3 numbers sum carry, and the fourth number add it with this sum.

So, you can have a tree of carry save adders; the last stage you need a parallel adder, the

advantage is that the total addition time can be fast and you can add many such numbers

together in parallel.

So, with this we come to the end of our discussion on adders. In our next lecture we shall

be starting some discussion on the design of multipliers.

Thank you.

