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Design of Adders (Part I)

So in this  course we have so far  seen various  aspects  of  computer  organization  and

architecture. So, if we recall we looked at the instructions and architecture of  a typical

processors. As a case study we looked at the MIPS 32 processor, then you looked at the

design of the data path and how we can design the control unit of a typical processor or

machine, then we looked at various aspects of memory system design.

Today starting from this lecture we shall be discussing various aspects of designing the

arithmetic  logic  unit  of  a  computer  system.  So,  as  you  know  a  computer  system

essentially is meant to do some computation and in that sense the ALU or the arithmetic

logic unit forms the basic heart of the system.

We shall be starting by looking at how we can design the different kinds of circuits for

implementing  addition,  multiplication,  division etc.  The topic of  our lecture  today is

design of adders.
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As you know that computers are built using tiny electronic switches the switches are

typically in the form of MOS transistors now the way this MOS transistors work in a

digital circuit or digital system is that they can be turned on or off, they can be in 1 of 2

states. So, quite naturally such a system can be used to implement or model a binary

number system where the state of the switch can be mapped to a binary digit 0 or 1.

So, the essential idea here is that when you are talking about designing arithmetic circuits

we need to work with binary numbers although in practice we are more familiar with the

decimal number system the way we work we calculate on paper, but here with respect to

computers we need to work with binary numbers. 

To recall you can represent binary numbers in either an unsigned form or in signed form;

with  respect  to  signed  number  representation  we  have  seen  the  sign  magnitude  1’s

complement and the 2’s complement representations. What we will see now is that how

we can carry out various arithmetic operations in binary and how to implement these

operations  efficiently  in  hardware;  this  will  be  the  main  objective  of  the  next  few

lectures.
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So, we make a quick recapitulation of the representation of integers. You may recall that

with respect to unsigned number representation. Let us say we are representing integers.

So, in n-bits we can represent numbers from 0 up to 2n - 1.
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So, let us say suppose n = 3. So, for n = 3 you can represent numbers starting from 0 0 0

up to 1 1 1. So, there are a total of 23  - 1 or 7 possible combinations.

This will be the range of the numbers, but when you talk about signed representation as it

said  there  are  several  alternative  methods  out  of  them  1’s  complement  and  2’s

complement are the most common. For 1’s compliment representation in n-bits the range

of the numbers that can represented is (-2n-1 – 1) to + (2n – 1), but for 2’s complement

representation when on the negative side we can represent 1 extra digit number extra

number (-2n-1 – 1).

The reason is that for 1’s compliment representation there are 2 alternate representations

of  0  this  we have  already seen  earlier,  but  in  2’s complement  form 0 has  a  unique

representation.  The main advantage  of this  1’s and 2’s complement  forms is  that  we

really do not need a subtract circuit in our ALU in both these representation subtraction

can be done using addition alone, but we will see for reasons that we will be discussing

that  out  of  these  two  methods,  again  2’s  complement  representation  has  a  distinct

advantage and therefore, it is most widely used.
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So,  let  us  first  look  at  how  we  can  carry  out  subtraction  using  1’s  complement

representation. The idea is fairly simple well if I subtract a number B from A,  let us say

A -  B this  is  what  we are  trying  to  compute  what  we do we first  compute  the  1’s

complement  of  B  let  us  call  it  B1 the  1’s  complement  of  B,  then  we  add  this  1’s

complement of B to A; that means, what we calculating A plus B1.

Now after this addition if we find that there is a final carry out if the carry of 1 is coming

out then what we do we make a correction, we take this carry back and add this 1 to R.

That means, we are effectively doing R equal to R plus 1 as a corrective step whenever

there is a carry of 1 coming out and in this situation the final result will be a positive

number, but; however, if there is no carry coming out this will imply that the result is

negative and it is already in 1’s complement form in this variable or register R. Let us see

an example let us say we are trying to subtract 2 from 6 in 4 bit representation.
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So, 6 in 4 bit is 0110 and 2 is 0010. So, the 1’s complement will be 1101; so we are

actually adding the 1’s complement of 2; that means, minus 2 to 6 directly. So, 0 and 1 is

1 no carry 1 and 0 is 1, 1 and 1 is 0 with a carry of 1, 1 and 1 is 0 with a carry of 1. So,

there is  a final  carry out.  So,  what  we are saying is  that  this  final  carry out  we are

bringing it back and adding to this intermediate sum. So, 0 0 1 1 plus 1 this becomes 0 1

0 0 this is the final result plus 4. This is the how subtraction is carried out when the result

is positive.
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Let us take another example where the result is supposed to be negative 3 minus 5. So, 3

is 0 0 1 1 and the 1’s complement of 5 is 1 0 1 0 you just add them up 0 1 is 1, 1 1 is 0

with a carry of 1, 0 0 1 is 1, and 1 0 is 1 but no carry. So, when there is  no carry, our first

conclusion is that the result is negative and whatever is remaining here this will be the

result in 1’s complement form, you recall 1 1 0 1 in 1’s compliment representation of the

number -2.
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So, this is what has been summarized here and what we get here. Now let us look at the

2’s complement representation. So, in 2’s complement also the idea is fairly similar. So,

when you are trying to subtract the number B from A, we take the 2’s complement of B.

So, you recall the 2’s complement of order of a number is the 1’s complement plus 1 you

add an additional 1 to the number to get the 2’s complement form. So, in this case this

number which you are trying to subtract you take the 2’s complement of that number. So,

let us call it B2 and we add B2 to a this is how we carry out subtraction, and after this

addition step if you see that a carry is coming out simply ignore the carry and your

conclusion  is  that  the  result  is  a  positive  number,  but  if  there  is  a  no  carry  your

conclusion will be the result is negative and it is already in 2’s complement form. 

So, you see here in 2’s complement form that additional corrective step is not required

that end around carry you are bringing it back and adding to the partial sum that step is

not required here. 



In  a  sense  2’s complement  representation  is  more  efficient  in  terms  of  the  effort  of

calculation. So, when you are talking about implementing in hardware this will also be

directly responsible for the decision that  will  be taking that 2’s complement  will  get

better than 1’s complement. So, let us takes some examples again here.
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Let us take this 6 - 2. So, for 2 the 1’s complement is 1 1 0 1 you add 1 to it you get the

2’s complement it is 1 1 1 0. You simply add 6 and -2 0 0 is 0 1 1 is 0 with a carry of 1, 1

1 1 is 1 with a carry of 1, 1 0 1 is 0 with a carry of 1. So, there is a carry coming out you

simply ignore this carry and 0 1 0 0 whatever remains that is your final result plus 4 as I

said here you do not need to add the end around carry.
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When the result is supposed to be negative like the same example 3 - 5 you take the 2’s

complement of 5 this is the 1’s complement plus 1, this is the 2’s complement you add

them up 1 1 is 0 with a carry of 1, 1 1 1 is 1 with a carry of 1, 1 0 0 is 1, 0 1 is 1 no carry.

So, your conclusion is that your result is negative and 1 1 1 0 is the 2’s complement

representation of the result. Now you can check 1 1 1 0 is nothing, but minus 2. So, you

are getting the correct result.

So, the idea is that for 2’s complement representation whether you are adding a larger

number from a smaller number or a smaller number from a larger number your addition

mechanism is identical.  Subtraction or an addition are no different when you want to

subtract you represent a negative number in 2’s complement form and you add it. So, you

only carry out addition no subtraction is required right.
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So, when we talk about addition of 2 binary digits let us say. So, when you are adding 2

bits A and B we generate a sum S and a carry C as per the truth table that is shown here.

If the input bits are 0 0 this sum is 0 as well as carry is 0, if they are 0 1 or 1 0 then there

will be a sum of 1, but no carry, but if they are both 1 and 1 then sum will be 0 and carry

will be 1. So, this is the rule as I said sum plus these two numbers A and B this will be

generating a sum and a carry. So, this is actually shown here 0 0 0 1 in that order first

carry on then sum 0 1 and 1 0. So, this kind of a circuit which implements this truth table

is called a half adder, and in a block diagram form we can show it like this A and B are

the 2 inputs and this sum and carry are the 2 outputs.

So, if you just write down the expression from this truth table expression for sum will be

AB’ + A’B this is nothing, but the exclusive or of A and B(AB).  and C will be 1 when

AB both are 1 that is AB. So, in terms of implementation a half adder will consist of an

exclusive OR gate and a AND gate.
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Now, when we talk about addition of multi bit numbers normally we do parallel addition

like this is a number this is another number. So, when you add them we start from the

least significant bit. So, initially the carry input is 0. So, this row shows the carry. This 1

1 will result in a sum of 0 with a carry of 1 this one 1 1 and 0 added again sum is 0 and

carry of 1. 1 0 0 will give a sum of 1 no carry. 0 1 1 will generate sum of 0 carry of 1, 1 0

0 will give 1 no carry this again 1 no carry 0 0 0 0.

So, you get the sum you take another example here where this is an extreme case of

something that I am trying to demonstrate. So, the first number is like this 0 1 1 1 1 and

the second number is only a 1 less zeros. So, you add the first two binary digits get a 0

with a carry of 1, 1 and 1 will be 0 with a carry of 1, the same thing is repeating 0 with a

carry of 1 0 with a carry of 1 and finally, this carry will be generating the last bit of sum.

So, what I tend to illustrate in this example is that the carry is propagating from the least

significant stage to the most significant stage. After adding the first digit there is a carry

generated,  this carry again generates the carry, this carry again generates a carry. So,

there is a rippling effect of the carry from one stage to the other. So, it is something like

that from the least significant stage to the most significant stage the carry will be moving

stage by stage in that fashion.

So, you will have to wait until all the carry has rippled through the different stages of

addition and finally, after  that you get the result.  So, the observation here is that for



adding multi bit number for every stage or bit position we need to add three digits, two

digits for the numbers A and B and one digit from the carry which is being generated

from the previous stage. So, essentially we require to add three bits, one bit for A, one bit

for B and one carry bit this kind of an adder which adds three bits is called a full adder.
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Let us now see how a full adder looks like. This is the truth table of a full adder where I

have 3 input bits A and B and sum and Cout output bits. So, in inputs there can be 8

combinations. So, if it is 0 0 0 sum will be 0 carry will be 0; for 0 0 1 sum will be 1 carry

will be 0; same for 0 1 0, but if that two of them are 1’s then sum will be 0 and carry will

be 1; similarly and for the last case 1 1 1, sum will be 1 carry will also be 1.

A full adder can be conceptually in a block diagram form expressed like these 3 inputs

and  2  outputs,  and  this  sum  and  carry  expressions  can  be  written  like  this.  Sum

expression if you just consider the output of the sum is 1 these 4 terms and the main

terms will be A’ B’ Cin, A’BCin’, AB’Cin’and ABC. So, if you do a simplification of these,

you will find that this is nothing, but the exclusive or of A B and C (ABC). Similarly

for  Cout as the four places where it is 1 it will be A’BCin,  AB’Cin,  ABCin’ and last one is

ABC. So, this again if you minimize it will be just AB or BC or AC (AB+BC+CA). So,

these are the final expression for the sum and the carry out .
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So, when you implement full adder there are various ways of implementing this circuit

the first circuit directly implements this function. S is the exclusive or and C is AB + BC

+ AC. So, it directly implements the Cin. C is the Cin.

So, an exclusive-or to generate the sum, and a 2-level and-or network to generate the

carry; now there is some scope for optimization if you break this 3 input XOR into 2

input XOR gates and if you take the output from the first XOR gate to this 2 level and or

circuit here also you can generate Cout and your circuit complexity becomes a little less

this is also an alternate design. And the third diagram that I am showing is that if you

have half adders as your building blocks you can combine 2 half adders plus AND OR

gate to design of full adder these are the alternate designs.
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So, let us look at the design like this let us make a simple delay analysis. So, we assume

that the delay of the basic gates as 1. So, what are the basic gates? Let us assume AND,

OR  and NOT are the basic gates.
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But what about XOR gate let us look at a scenario of a 2 input XOR gate. Let us say I

have 2 inputs A and B and an output of f. So, what does f represent A’B or AB’ bar. So, if

I can implement it using 2 level AND OR this will be my f. The first input will be fed

with A’ B. So, if this is A there will be a NOT gate to generate A’ and then AND with B.



Second one will be AB’. A will be fed as it is and there will be B’. So, here if you look

from the input to the output you will see that there are 3 level of gates one is  to negate

the gates then these AND gates and then these OR gate.

So, the equivalent delay of a 2 input XOR will be thrice delta if delta is the delay of a

basic gate. This is what is mentioned here that for the XOR gate for this sum the delay

will be thrice delta and for the carry this circuit I am already showing here it will be 2

level gate delay.

Student: (Refer Time: 22:18).
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Now let us see how we can design a parallel adder. Parallel adder means we are trying to

add more than 1 bits together. For n-bit numbers we have already seen how we can this.

The same concept you can extend in the first adder design that we shall be seeing there

are several main types of adders that we will be exploring, ripple, carry look ahead, carry

save, carry select  adders etc.
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But let us look at it 1 by 1; ripple carry adder is the simplest which models the way we

do addition using a paper and pencil method, just to recall again you take this example

once more. So, the 2 numbers A and B are given we add the least significant digit of the

numbers with an initial carry of 0 no carriers there you get a sum.

Student: (Refer Time: 23:24).

You get a carry in the next stage you again add these 3 digits, you get a sum and a carry

you again add these 3 digits and this way you repeat. So, if there are n digits in my

binary number, we require n such adders.
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Let us see this n- full adder stages will be like this.

Student: (Refer Time: 23:54).

So, my input numbers are fed bitwise in this form is A0,B0 to the least significant stage a

A1,B1 here a A2,B2 here and An-1 and Bn-1  will here; and as you can see that the carry out

of the first stage the is going as a carry input to the next stage, carry out of this stage is

going as  a  carry input  to  next  stage  and so on.  This  is  a  parallel  adder  that  I  have

designed just using a cascade of several full adders. So, I have several full adders and

every full adder is capable of adding 3 bits. So, I am adding 3 bits like that and there will

be 1 full adder at every stage which will be handling the addition of those 3 bits; and

when  the  addition  is  carried  out  the  full  adder  is  generating  a  sum and  it  will  be

generating the carry for the next stage.

So, the example that I have shown in the worst case the carry might be propagating from

the least significant stage to the most significant stage for ripple carry adder circuit. So,

what we assumed is that the two numbers are A and B both are n-bit numbers the input

carry is C0 this is the carry in of the last stage, sum is S0 to Sn-1 for n-bits and there will be

a carry out Cn.

Now if you want to calculate the delay it is fairly simple. See for a full adder we have

already calculated the delay, and we have seen that the delay for the carry out is twice



delta; so for the first full adder when I apply A0 B0 and C0. So, after 2 delta C1 will be

generated. So, it is only after 2 deltas in the worst case this A1 B1 C1 will be available. So,

you wait for another 2 delta you will be getting C2. So, for C2 will be getting at four delta

C3 will be getting at 6 delta and so on.

Cn-1;  so if  you  extend it  will  be  after  (2n  –  1)xdelta,  and the  final  carryout  will  be

generated after 2n delta. So, for generating the carries your maximum delay is 2n delta;

let us now look at this sum. See for sum as you recall it is an XOR gate. So, delay will be

3 delta. So, S0 will be generated in 3 delta. Let us look at S1, this carry C1 is generated

at 2 delta time. So, starting from 2 delta this will require another 3 delta, that will be 5

delta, C2 is generated at 4 delta time. So, starting at 4 delta you take another 3 delta for

FA2. So, S2 will be generated at 4 delta + 3 delta = 7 delta time. Look at the last stage;

Cn-1 is generated at this time (2n – 1) delta so that plus another 3 delta, which is (2n + 1)

delta.

So, you see out of these (2n + 1) delta is larger. So, the worst-case delay of the ripple

carry adder is (2n + 1) delta. This grows linearly as the value of n increases and this is

mainly due to the ripple effect of the carry. So, I have already shown the worst-case

scenario  that  when you  apply  an  input  carry  the  worst  case  the  input  carry  will  be

rippling through all the stages and to the final output fine.
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So, this is how a ripple carry adder works; delay is proportional to n. So, how could

design a parallel subtractor, I have already shown you that how to design a parallel adder.

Now already we have seen how 2’s complement subtraction is done you take this 2’s

complement of the number you want to subtract and then add it. So, it is fairly simple

you see I  am just  showing you a schematic  diagram let  us say for every bit  of this

number B, let xi denote Bi’. So, what we do we take our normal ripple carry adder just

like we have shown?

The first number A we apply as usual; second number instead of B you apply this x. So,

what is x? X is essentially the 1’s complement of B --- you are complementing or doing a

NOT of all the bits, and another change you are doing, carry input see in the initial cases

this carry input initially would be 0, but here we are saying that the carry input is set to 1.

So,  essentially  I  am applying  1’s complement  and  adding  a  carry  input  of  1  which

effectively means I am adding a 2’s complement number. I am doing a 1’s complement

plus another extra 1 that makes it 2’s complement. So, what this adder will be computing

is nothing, but the sum of A and the 2’s complement of B right. So, what will be getting

in the final sum output will be the final result A minus B. So, how you can design a

general adder - subtractor?
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Then let us have a circuit like this we have a n-bit adder I apply the first number here A0

to An-1. Well I apply the second number not directly, but through a sequence of XOR



gates. So, how are these XOR gates connected? One of the input to the XOR gate is

connected directly from an external control input add/sub, and the other input the second

input of this XOR gates are fed with the bits of the second number B0 B1 Bn-1. 
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Suppose I have an XOR gate. Let us say I have 1 input as let us say Bi, I have a second

input C. If this is F, let us say if C is 0, then you can easily check F will be same as Bi; if

C is 1, F will be same as Bi’. Because if you write down the exclusive or function it will

be immediately clear you put C = 0, Bi will remain; you put C = 1, Bi’ will remain. So,

you can use this XOR gate as a controlled inverter; if C is 0 no inversion, if C is 1 then

there will be NOT. So, essentially here this XOR gates are being used as a controlled

inverter, if  this  control  signal  is  equal  to 1 which means the 1’s complement  of this

number B will be fed into this input of the adder, and this C0 will also be 1 same input is

will fed here. 

So, now, we will be doing a subtraction, but if this control input is 0, so the carry input is

0 as well as B will be directly coming to the input of the adder. So, now, it will be acting

as an adder. So, this simple circuit just by the addition of a few exclusive OR gates we

can have a combination where you can implement both an adder and a subtractor using

this same hardware circuit. 

We shall see some adder designs which are faster than the ripple carry adder that we have

already seen in our next lecture, it means we have also seen one thing that how we can



combine addition and subtraction. For subtraction we really do not need a separate piece

of hardware we can use an adder directly to carry out subtraction as well. So, this was the

main topic of our discussion in this lecture.

With this we come to the end of this lecture. As I said in our next lecture we would be

looking at some other kind of adder designs, which are in some sense better or faster than

the ripple carry adder that we have seen.

Thank you.


