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Improving Cache Performance

Welcome to the last lecture on Cache Memory. In this lecture we will be seeing some

methods  for  improving  the  cache  performance,  prior  to  that  we  will  look  into  two

examples.
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Let us consider a CPU with average CPI as 1.1, let us assume that an instruction mix like

ALU having 50%, load having 15%, store 15%, branch 20%, and assume that a cache

miss rate is 1.5%, and the miss penalty that means, if there is a miss what is the time

required to bring it from the next level that is; let us a main memory is 50 cycles. We

need to calculate the effective CPI for a unified L1 cache that uses write through and no

write allocate.

Along with this we will be calculating with no write buffer, next we will be doing with

perfect write buffer, and another one we will be doing with realistic write buffer that

eliminates 85% of write stalls. 



Let us first calculate the number of memory accesses per instruction. When there will be

a memory access there will be a memory access for load and store. So, let us say for

fetching the instruction we need to have one cycle; we require one cycle for that and then

0.15 for load 15 percent of load instruction, and 0.15 for store where we will require

memory operation. So, total is coming to 1.3.

So, for all memory accesses all instruction accesses is 1 and 15 percent for load and 15

percent for store. Now percentage read will be how much? Percentage read will be once

we are reading a particular instruction and then again when we are reading when we are

loading a word. So, 1 for reading every instruction, and 0.15 for load instruction, divided

by total  number  of  memory accesses  per  instruction  which  is  coming  down to 88.5

percent. So, percentage read is 88.5 percent.

Now, coming to percentage writes for the write we will require this 15 percent only, 15

percent divided by 0.13 that is the total number of memory access per instruction. So,

now, we have found out percentage read, percentage write and we also know the total

number of memory accesses per instruction per instruction what will be the total number

of memory accesses.
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Now, coming to the solution, in the first case we need to consider where we say that

there is no write buffer. So, in this particular case there will be stall on all writes. So,



whenever there is no write buffer. So, we are not writing it to a high-speed hardware

rather we are writing it back to the main memory or you can say the lower level memory.

So, in that case how do we consider the number of stalls … there will be stalls on all

writes. So, the memory stalls per instruction will be 1.3 multiplied by 50, into we have

percentage read of 88.5 percent, this is percentage write of 11.5 percent and assume that

there is a cache miss of 1.5 percent.  So, we need to consider that as well.  So, if we

consider that and what is 50? 50 is our miss penalty. So, for miss penalty there will be 50

cycles. So, when we multiplied 1.3 into 50 into this percentage, we get roughly 8.33

cycles. This is the total number of cycles that we are getting; that means, these many

memory stalls per instruction will be there.

So, what will be the CPI? CPI will be average CPI plus we have to consider this memory

stalls CPI. So, this memory stalls per instruction is 8.33 we have calculated. So, total CPI

will come down when we have no write buffer as 9.43 when we are using write through

policy without any no write allocate. 

Let us see the next case where we have a perfect write buffer; in this particular case all

write  stalls  are  eliminated.  So,  there  will  be  no  write  stalls  now. So,  it  will  be  1.3

multiplied by miss penalty, multiplied by the reads percentage read and the miss rate we

have to multiply these 2 only, and we are not considering anything for the write in the

previous case we have considered this 11.5, but here we are not considering that.

So, for this it is coming to 0.86 cycles. So, the CPI when we have a perfect write buffer

we have 1.1 plus 0.86 which is coming to 1.96. So, we can see that there is a huge

difference between when we have no write buffer and when we have some write buffer.

Now let us consider a realistic write buffer. So obviously, perfect write buffer is difficult

to have because there might be some writing going on and at the same time some read

operation is also required.

So, in such cases if there are 85 percent of the write stalls are eliminated; that means, 15

percent will still be there, but 85 percent there will be no write stall. So, in that case how

do  we  find  out  1.3  into  miss  penalty,  multiplied  by  this  was  the  miss  plus  a  read

percentage for the read percentage it will be 1.5 and there will be 15 percent for the

write.



So, let us just see this is 11.5 percent and for this 11.5 percent this will be 1.5 this is not

15 this should be 1.5. So, which will come down to if you solve this particular equation it

will come down to 1.98 cycles. So, it is now coming down to CPI 1.1 plus 1.980, which

is  roughly  equal  to  3.08  which  is  to  some  extent  a  realistic  value  because  we  will

definitely have some even if we have write buffer there will be some stalls.
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Let us consider another example where we have similar kind of values, but now we have

calculate the effective CPI for a unified L1 cache using write back and write allocate;

that means, we will not be writing it through to the main memory always, rather we will

be writing it into the cache memory with write allocate;  that means, we must have a

space in our cache memory to write that particular thing.

With the probability of cache block being dirty is 10%, and we assume that 10% of the

time the cache block will be dirty and if the cache block is dirty we know we knew what

we need to do it in that particular case, we have to write back the data into the main

memory and then we have to again read or write whatever we need to do the next.
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So, the number of memory accesses per instruction will be 1 plus 0.15 plus 0.15 that is

1.3. Now let us see the memory accesses per instruction which is 1.3, stalls per accesses

will be one minus hit ratio of L1 x tMM x percentage time it is clean, because when it is

clean then we have to only write it once. If it is dirty then we have to do it twice we have

already seen that in our previous lecture. The calculation is shown, which comes to 0.825

cycles.

Now we see the memory stalls per instruction. We will just multiply the total memory

accesses per instruction and the memory stalls per instruction, and we get 1.07 cycles.

Thus what will be the effective CPI 1.1 + 1.07 which is coming to 2.17 which is even

less than the realistic write buffer if we use in our previous case when we are using write

through policy.

So, these are the 2 examples we have discussed for writing into the cache using write

through and write back policies.
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Now, coming to the methods that we will be looking into for cache improvement, how

we can further improve the cache. Let us consider this expression of average memory

access time AMAT, which is the hit time (basically hit ratio multiplied by the access time

of the cache) plus miss rate into miss penalty. So, when we talk about improving the

performance of this cache memory system, ultimately we need to reduce AMAT. So,

either we can reduce hit time, or reduce miss rate or miss penalty.
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So, we need to see how we can take care to reduce all these parameters. In basic cache

optimization  techniques  we categorize  the techniques  into  three groups based on the

parameters. How we can reduce the miss rate? Miss rate can be reduced by using larger

block size. If you use a large block size then if my program is pretty large and you have a

large block, the whole program is brought to some block of the cache and you can access

it nicely. So, larger block size in turn reduces the miss rate.

Now how do we reduce miss penalty? By miss penalty we mean that if you have multi

level cache we bring the data from main memory into the upper level of memory, and

then from upper level of memory it goes to cache. The miss penalty can be reduced by

having multi level caches.

Now, how do we reduce the cache hit  time? When we are hitting cache and we are

searching for  the  TAG, we are  matching something.  From the  address  part  we have

already seen we have certain parts for different kinds of mapping technique; if you are

using set associative mapping technique you have a TAG you have a SET you have a

WORD. So, you need to match that TAG with the number of blocks that you are having.

When  you  are  matching  this  TAG the  CPU generates  a  logical  address,  the  logical

address gets translated into physical address and then that matching takes place.

Instead once we know the logical address, from the logical address if we can extract the

TAG and then can directly start this matching, the hit time can be reduced.
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Let us see each one of the points in some detail. When we use larger block size what

happens? Increasing the block size helps in reducing the miss rate; obviously, if you have

a larger block size the entire program you can bring to the same block and then you can

access in a faster fashion using that. 

We have various kinds of misses that also we have seen in the previous lecture. Larger

block size will also reduce the compulsory misses. Every time you bring a data there is a

miss, but if you want to bring a data you bring a larger block where all the data are now

brought in. And now you will be just hitting the cache to get the subsequent one, the time

will be spend in bringing the entire data from the lower level of the memory to higher

level  of  the  memory,  but  then  you  can  access  it  very  easily,  but  what  will  be  the

drawback. The miss penalty increases as it is required to transfer a large block.

So, for bringing a large block, there will be more number of words in that particular

block. You have to bring the all the words into your cache. In that particular case you

have to wait until the entire block is brought in. So, the miss penalty will increase, but in

turn the hit time will increase. Since the number of cache blocks decreases the number of

conflict misses and even capacity misses can increase. So, conflict miss will happen we

know for direct mapping and for set associative mapping, where different blocks of main

memory are mapped to a same block of cache memory.

In  that  case  this  conflict  will  be  more  because  you  have  smaller  number  of  blocks

because the block size you have increased. If the cache size is limited and the block size

is more, smaller number of blocks will be there. So, if you want to bring two blocks

together then it will be a problem. So, it can be seen that if you have a larger block size

the  overhead  that  we are  getting  might  outweigh the  gain,  the  gain  which  we were

expecting you might not get, but the overhead becomes much more.



(Refer Slide Time: 18:11)

Let us see this particular diagram. This is the miss rate, this is the block size and this is

the cache size. When the cache size is small the miss rate decreases, but after certain

point the miss rate again increases, whereas if you have a larger block size you can see

that the miss rate decreases and there is an increase, but not so much here. 

(Refer Slide Time: 19:03)

We have seen that if you increase the block size the miss rate will decrease. In such case,

other overheads will also be there; conflict misses and capacity misses will also be there,



then how do we select the block size? The optimal selection of block size depends on

both the latency and the bandwidth of the lower level memory.

If we have high latency and high bandwidth this encourages large block size, since the

cache gets many more bytes for a miss for a nominal increase in miss penalty. So, with

nominal increase in miss penalty we get more bytes from a miss. If you have low latency

and low bandwidth this encourages smaller block size since more time is required to

transfer large blocks of course, more time will be required to transfer larger blocks.

Larger  number  of  smaller  blocks  may also reduce  conflict  misses  if  you  have  more

number of blocks, then this conflict miss can get reduced. 

In such situation what can happen is that if you have large number of smaller blocks, you

will have various opportunities of mapping different blocks. So, the conflict misses can

even reduce.
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Next is use larger cache memory. So, if you have larger cache memory, then it will be

easy.  So,  let  us  see  how  it  can  improve.  Increasing  the  size  of  the  cache  is

straightforward. It is a straight way straightforward way to reduce capacity misses, but

what is the drawback then? Increases the hit time since the number of tags to be searched

in parallel will be possibly large.



So, one of the parameter is increasing. So, we are decreasing the misses the miss rate is

decreasing, but the search time for the tag in the cache memory will increase, that is, the

hit time result in higher cost and power consumption of course. We know that cache

memory is built using static RAM that requires roughly 6 transistors for one bit. So, it is

much more costlier compared to data memory. If you are increasing the cache memory

you are increasing the cost as well.  So, all these are related.  So, which one you will

reduce to how much such that you will get a better gain in turn needs to be analyzed and

understood.
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We can use higher associatively. So, for a N-way associative cache the miss rate reduces

as we increase N. This reduces the conflict misses as there are more choices to place a

block in a cache. As the size of this N increases what we can do is that more number of

blocks from main memory can be placed in same set in that particular cache.

In that  way the conflict  misses  will  definitely reduce.  So,  there  is  a  general  rule  of

thumb:  8-way  set  associative  cache  is  an  effective  as  fully  associative  for  practical

scenario. So, we need not have to pay the cost for a fully associative cache.

So, direct map cache of size N has about the same miss rate as a 2-way set associative

cache of size N/2. So, if we have a N/2 size 2-way set associative cache, it will be same

as direct mapping. The direct mapping will be easy to implement as well. So, what is the



drawback of this? Increases the hit time and as we have to search a larger associative

memory.
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This is another way use of multi level caches; here we try to reduce the miss penalty and

not the miss rate. So, we are not reducing the miss rate rather we are trying to reduce the

miss penalty, that is the time to bring the data from your main memory to cache memory

and then to processor. 

The  performance  gap  between  processor  and  memory  increases  with  time  that  we

already know, use faster cache to bridge the widening gap between processor and main

memory. Multiple number of levels of cache will be helpful because we are bringing the

data from main memory and we are keeping in those multi level caches, and whenever it

is required by the processor and if it is not present in L1 cache, it is looking into L2 and

L3 to find out the data and in most cases they are getting it from L1 and L2 and they do

not have to go to main memory to access the data. The L1 cache can be small enough to

match the clock cycle time of the fast processor, the L2 cache can be large enough to

capture many accesses that would go to main memory thereby reducing the miss penalty.

So, what we are trying to say here is that L1 cache will be small enough and it will be

much faster, and L2 cache will be little larger such that most of the data from main

memory will be there in L2 cache, and whenever it is not present in L1 cache I am just



getting it from L2 cache and not from main memory. So, we are getting some advantage

out here.
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So, let us consider a 2-level cache system consists of L1 cache and L2 cache, the average

memory access time can be computed as shown. 
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We define the following for the 2-level cache system here. One is call local miss rate;

this is defined as the number of misses in a cache divided by total number of accesses to

this cache. So, for the first level this is miss rate of L1, and for the second level this is



miss rate of L2. Now what do you mean by global miss rate? This is defined as the

number of misses in the cache divided by total number of memory accesses generated by

the processor.

So, we are not separately taking miss for L1 and miss for L2; rather we are taking in

terms of the total. This is in terms of total number of memory accesses generated by the

processor. For the first level this is miss rate of L1, but for the second level it will be

miss rate of L1 x miss rate of L2.
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The local miss rate is large for L2 cache because the L1 cache takes out a major fraction

of the total memory access, because we are separately calculating for this purpose the

global  miss  rate  is  more  useful  measure.  So,  we generally  use this  global  miss  rate,

fraction of memory access is generated by the processor that goes all the way to the main

memory.

A useful measure that can be used is average memory stalls for instruction, defined as

shown.
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Now, let us see this example. Suppose that 1000 memory references are there and there

are 60 misses in L1 cache and 15 misses in L2 cache, what are the various miss rates. So,

total  is 1000 out of which 16 misses are there in L1 and 15 misses are there in L2.

Assume that miss penalty is 180 clock cycles, hit time of L1 is 1 clock cycle, and hit

time of L2 is 12 clock cycle, what will be the average memory access time ignore the

impact of writes?
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The miss rate of L1 will be 60 / 1000, because total we are considering that is 6% both

for local or global.

Miss rate of L2 means how many misses total in L1 is 60; out of 60 there are 15 misses.

So, 15 / 60 =  25%, and global miss rate for L2 will be 15 / 1000 = 1.5%. 

The calculation of AMAT is shown (Refer Slide Time: 32:41)

Let us see another thing; multi level inclusion versus multi level exclusion. Multi level

inclusion requires that L1 data are always present in L2 cache,  inclusion means it is

included. So, in L1 we have certain data and L2 cache is the next level cache where we

are saying that whatever data is present in L1 is also there in L2, that is called multi level

inclusion. This is desirable because for the consistency between IO and caches can be

determined just by checking the L2 cache.

The IO can just check the L2 cache and find out the data. What is multi level exclusion?

This requires that L1 data is never found in L2; that means,  L1 data are certain data

which is there in L1, and L2 data are certain data that is present in L2, but there is no

common  data  in  between.  That  means,  whatever  is  there  in  L1  is  not  there  in  L2.

Typically a cache miss in L1 result in a swap of block between L1 and L2, rather than

replacement of L1 block with a L2 block. 

So, there is no replacement rather you are bringing a block from L2 to L1. This policy

prevents wasting space in L2 cache.
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Now, giving priority to read misses over writes. We know that reads are more frequent,

the presence of write buffers can complicate the memory accesses, the buffers may be

holding the updated value of the location needed on a read miss. So, whenever there is a

read miss the buffer may be holding an updated data. The simplest solution that is there

is to make the read miss to wait until the write buffer is empty. 

As an alternative what  can be done is  check the content  of the write  buffer for any

conflict, if there is any conflict we have to check the write buffer and if none the read

miss can continue. 
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Another is avoiding address translation during cache indexing. As I said that whenever

CPU is generating a logical address, it is first translated into physical address and then

we extract  the  TAG bits  that  are  matched.  Finally,  we see  that  whether  the  data  or

instruction is present in cache memory or not. Even a small and simple cache must cope

with the translation of virtual address to physical address to access memory. So, this has

to be done.

As in an idea to make the common case first, what can be done we use virtual addresses

for cache since hits are much more common than misses.  Such caches are termed as

virtual caches. We will have some virtual caches in place to make the common case fast,

but what is the drawback? We are saying that we will not be having a translation rather

we will be extracting the address from the logical address only.

Page level protection is not possible, this is a drawback and context switch and IO that

uses physical address further complicates the design, because this IO and the context

switching;  that  means,  switching  between  two  processes  is  required  often.  So,  that

process becomes more complicated.
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These are some additional cache optimizations like to use small and simple first level

caches to reduce hit time, way prediction to reduce the hit time, pipeline cache access to

increase cache bandwidth, multi-banked caches to increase the cache bandwidth, critical

word first and early restart to reduce the miss penalty, compiler optimization to reduce

miss rate and prefetching of instruction, and data to reduce miss penalty or miss rate. So,

these are some more cache optimization through which we can reduce hit  time, miss

penalty and miss rate.

There are also some more methods through which miss rate, hit time, and miss penalty

can be further reduced. 

We are at the end of lecture 32 and we are done with memory system. So, in this week

what we have seen are various kinds of techniques through which we can reduce the

memory access time, such that it can bridge the speed gap between the processor and the

memory.

Thank you.


