Computer Architecture and Organization
Prof. Kamalika Datta
Department of Computer Science and Engineering
National Institute of Technology, Meghalaya

Lecture - 03
Memory Addressing and Languages

(Refer Slide Time: 00:29)

Overview of Memory Organization

 Mamory o of he Medl AR Suli-iyitimd o b cofmpuled that
dagdrmmingd the overall perfarmence
= Concsplual view af memary
= "'-"I."I ST A =L AT s sach ui AR FHACH i having & wnigus addreas
= Lachstorage locadion can hald @ Nieed arsount of informaklon [emulBiple ol biks
hileh in 1he BEsicanic of dass vioregs]
A mEmary pyitem with & locatione and N bite par locsticn, & referred 1o
wE &0 &M g N memaony
= [t &F and N osre Dypkcally v posssrs ol 2

= Lrample: lJ0ME g E 8% 06 5 57 pix

T, T B el IATTRITE Od
LR F FLASCH LU TECHMULLELT. WL,

Welcome to the third lecture on memory addressing and languages. So, let us know about
the overview of memory organization. What is memory? Memory is one of the most
important subsystems of a computer that determines the overall performance. What do
you mean by that? See as you have seen in the previous lecture that we are storing the
instruction and data in the memory. If your memory is slower then loading the data from
the memory will be slower. So, in that case we need to have a good speed memory. The
conceptual view of memory is it is an array of storage locations with each storage

location having a unique address. So, it is an array of memory locations.

(Refer Slide Time: 01:30)

So, as I said it is an array of memory locations. So, we have first location as 0 0 0 0, next
location as 0 0 0 1 and so on, maybe the last location is 1 1 1 1. So, it is an array of
storage location each with a unique address. So, these are individual locations and this is
the address associated with each location. And each storage location can hold a fixed
amount of information, which can be multiple of bits which is the basic unit of data
storage. A memory system with M locations and N bits per location is referred to as an M
x N memory, where both M and N are typically some powers of 2. An example: 1024 x
8.

So, if [say 1024 x 8, it means we have 10-bit in the address, and each location is having
8-bit. So, you can store these many locations in these many locations; this shows how a

memory will look like.

(Refer Slide Time: 03:53)

Some Terminologies
= Bit: Asingle binary digit (0or 1)
* MHibble: Collection af 4 bits.
= Byte: Collection of & bits.
Ward Doeirs Nk hanv & unigue definitian,
= Warss trom one computer to sncther; typecally 12 or 84 bife.

T, i BTl TR TE O
LR ¥ FLARICH LU i TECHMOLLRLT, BLHFL AN,

Now, some terminologies you must know when we talk about memory. What is a bit, we
all know a bit is a single binary digit either 0 or 1. Nibble is a collection of 4 bits. Byte is
a collection of 8 bits. And word does not have a unique definition because we can either
have a 32 bit word length or 64 bit word length. So, word does not have a unique

definition.

(Refer Slide Time: 04:29)

How is Memory Organized?

= Plemory is aften byte organized
= Evaey Byt of the maerody hid & unijue sddreis
= Pultiple bytes of data can be accessed by an instruction
Exsmple: Malfsword |2 bytea), Word [4 Byted), Long Word |8 bytaa)
« For higher data transfer rate, memory is often organized such
that multiple Bytes can be resd of written simultaneduih
= Mateiiary 10 bridgs thi prooeiiar-memory iiesd gep

= Shall ko diszusaed lnfer in data

T, T B Pl IATTRTE Odf
LR FRLANCH LU TECHMOLLULT. BN,

Now let us see how is memory organized. Memory is often byte organized. So, we never

say that each bit is having an address, rather we say each byte is having an address, that

means every byte of the memory has a unique address. And multiple bytes of a data can
be accessed by an instruction. I will just take an example: ADD R1,LOCA. So, if you
consider this instruction, it is depending on how many bits this ADD will have, how
many bits this register will have, and how many bits this location will have; this will
define that how many words this instruction will have or how many bytes this instruction

will have.

So, in that sense what [am trying to say is that how many bytes this instruction will take
is dependent on various other factors like the total number of instructions available in
your computer. The total number of registers present in your computer, and also the
number of locations you are having based on which you can determine the number of

bytes required to represent this particular instruction.

For higher data transfer rate, memory is often organized such that multiple bytes can be
read or written simultaneously. This is basically needed to bridge the processor memory
speed gap; we shall of course discuss this later, but I will just tell very briefly about this
memory processor speed gap. So, as you know that processor speed is increasing

memory speed is also increasing, but not at this pace the processor is increasing.

(Refer Slide Time: 07:06)

i @diinr Memory
Performands Gap i

* With technclogical -
stusncementy, Bock T .
e ST B B T e T |

Ledurminsg Laslan
B Hiwsningid, L dhieidl gah

]
- u-a—nE

Ympcial cechnigusy arech =Y ; o it

= =t

M=l C ik Gl g CHA fEp - e

L AP TRy

B Memory inderleayng

T, i
LR FEANCH LU

So, this picture will show you the processor memory performance gap. See with
technological advancement both processor speed is increasing and also memory speed is

increasing; however, there is a speed gap which is steadily increasing. So, earlier the

speed gap was much less, but now with technological advancement CPU speed has
increased to a greater extent; memory speed has also increased, but not at the same pace

as the CPU. So, we can see this.

So, some special techniques are used to bridge this gap. We will see this in the memory
module design, where the concept of cache memory and memory interleaving will be
talked about, but from this we can see what we can say is that there is a still huge gap
between the speed of a processor and speed of your memory. So, this is where we have to
agree upon that. We are still in the phase we are growing we are trying to make certain

techniques to bridge this gap, but still this gap exists.

(Refer Slide Time: 08:40)

How do we Specify Memory Sizes?

Uit Bytas In Bacimal

| i i

H hit 1E] 1or ¥
I 1 1

Eilpkyie (EH [F S {r}

Mligihye (kiR 105 o } Lk

Glgahvre [CeR) 1L.O0TE TS &M ar 2 g
| i i

Tarabsyta 1T} 1EE 11 6FF PN or IV 1

Vatshyiz IR [' I pLik

kgl e 111.]' [o ILH=
i ‘

fettabyte (70} 2 [i

T, i

LEF 1 F A H LR Wik

Now, how do you specify memory sizes. Memory sizes can be 8 bit which is a byte. It
can be kilobyte 2'%; it can be megabyte 2%°; gigabyte 2°°; terabytes 2%, and many more
like petabyte, exabyte and zettabyte.

(Refer Slide Time: 09:09)

= | akiee are o B A the B,
tha msximum Agmber of

Lo dgE [DCatinng (60 De 7

ko nal, d5h lodadisng fadid
= Forn=1& t&K |ccaibor RN B "
& Forns 0 18 lpoaiions Diata MEMUH?
= FOrfie Ay, &Ha | i 1= i) :
= Mdderfday mamary 4Rhips Canf T T T
itars iavars| Sigabits of data
5 o ; ED WH [N
Lrgradarnig B RA [LHCAAY §

T, i
LEHTFFLANCH LU

Now, you see if there are n bits in an address, the maximum number of storage locations
that can be accessed is 2".

(Refer Slide Time: 09:31)

— = — —= =
f .-'-“..'I

A d 4
[vE.]:}
gal
aif =

i hut

= =

jal I =

Pid

This is a small example, we will take n = 3. So we can say how many locations we can
access; 2° = 8. So, the first location will be 0 0 0, the next location will be 0 0 1, next will

be010,011,100,101,110and 11 1. So, with n bits we can have 2" locations that
can be accessed.

So, if we have 3 bit in the address, so maximum location that can be accessed is 8. So,
for n = 8, 256 locations (2%); for n = 16, 2'® = 64K locations; for n = 20, 1M locations,
etc. can be accessed. So, this diagram shows the address bits; if you have n bit address
we can have 2 to the power n locations that can be accessed. And modern-day memory
chips can store several gigabytes of data that is our dynamic RAM. We will be looking

into more details about each and every aspect of memory module.

(Refer Slide Time: 11:33)

Bihflidi [LR]

T, i il
LEHT ¥ FLARLH LU S

Now, as I said for an 8 bit address, 2 to the power 8 unique locations will be there. The
first locations will be all Os, and the last location will be all 1s; and each of these
locations again will have some content. So, consider an example of 2* x 16 memory. So,

in each of these locations we will have some data which is 16 bits.

(Refer Slide Time: 12:02)

Some Examples

& pamputar Rad 84 BB (magebytei) of byte-addrassable mamary. Hav
many bt ars Asedad in the meamary addresa?

= dre Space = 0 M= PEI® 0= 30

= {1k e mic My ok Byl A0ENELRETHE, W Nelisl AL Bt of addeeas

A pormdutar had 1 G8 of Moy, Eith vword 4 this camputer i@ 32 bit
Haw misny Bitd #te readed 19 addraeid any inges word In masmasy?

[=]

Addreu Snace =1 GE = 291
| wead = 33 bits =4 @
W have 297 4 = 29 woed

= | has, vou redguire 28 biks 19 add ress pdck woe

T, i
LEHTFFLARCH LU

Let us see a computer with 64 MB of byte addressable memory. How many bits are
needed in the memory address? As I already said, that 64 MB = 22 ; that is, we need 26
bits to represent the address. Now, let us take another example where we say a computer
has 1 GB of memory. So, we are saying total of 1 GB of memory, each word in this

computer is 32 bit.

(Refer Slide Time: 13:18)

o T
{
"':rl—l
Laty sna
[} M skl B
p—t—l i
[[L 1]
! B |

So, 1 GB =2, If each word is 32 bits, that means 8, 8, 8, 8. So, total words possible will
be 2/ 4 = 2%, So, we require 28 bits, with address from 0 to 2%-1. If it is byte

addressable, each byte can be accessed with address from 0 to 2%°-1.

(Refer Slide Time: 15:02)

Byte Ordering Conventions

LateLE T4

Lharadie]
= [itferentcomputer: use differant dats L

i
crderingconvantions. i e a
= Lowsarder byte |
Lia-aird e by Fiohing ot '
H nh T Prgtee Fardd
4 i ¥ L n

= Thusae lébi number 11001100 103301010
car ba dtored &l aithaer

11001100 | 10101010 | or [10100000 | 1130110

bl T, B Pl IATPRTE O
LEH ¥ FLARCH LU TECHMOLLRLT, WL HPLAAN,

Now, let us also understand what is byte ordering convention. Many data items require
multiple bytes for storage. And different computers use different data ordering
convention, it is known as low order byte first and high order byte first. So, these two are
called basically Little Endian and Big Endian. So, you see this data type character is 1
byte, integer is 4 byte, long integer is 8, floating point 4 and double precision is 8. Thus
if you have a 16 bit number which is represented like this, so in one way this is the total
number high order bit is stored in high order address, and the low order is stored here

and so on here it is stored differently. This is stored first and this is stored next.

(Refer Slide Time: 16:13)

= The two conventions have been named a5:
i] Lirtla Endian
L] Thao leask sgnificans byie icaed at lovwor address Followsed by the maost
wigrdlicant bye. [sarmples: bvied procssos, [C alphs, st
8, i Ol (i E Vo hrevadll DO G 0L ey sl Do Deglle (i1 6
by Big Endign
LI I migni®cant byt iy sfored st loveer acddress ‘olloraed by Ehe lrand

1+ [zamiplos) I risinlramses, Motorols micooprocsesos

Lams corcept lollowsd For arbitrany multl-byte dsta

T, i
LEETF RARCH LU

So, let us see the convention that has been named as little endian. The least significant
byte is stored at lower address followed by most significant byte. So, Intel processors
DEC alpha they all use little endian method, where again I repeat least significant byte is
stored at lower address. Now, same concept follows for arbitrary multi-byte. So, if you
also want to store multi byte then the same thing will follow there also. Now, in big
endian the most significant byte is stored at lower address followed by least significant
byte. So, the most significant byte is stored at lower address followed by least significant

byte. IBM’s 370 mainframe uses big endian concept.

(Refer Slide Time: 17:14)

An Example

s Rapreienlthe Tollewing 33-Bit Aumbier in Bath Lmnle-Eadiasn end Big-Eniuar
i mlmiary Proem sddress 2000 anvwards

01010701 00110011 O0001111 11000021

Addrias Diarta Adddriaa Dt
Fal i 1 LKL 1 SN R LaRIaR
2] LU 2] Y i)
22 D1 1NN] 007 Y 00061111
AN AR AR LR L MK (RELEE L)

T,
LR F R ARH LU

Now, let us see this representation with this example of a 32-bit number both in little
endian and big endian. So, this is the number and lower byte is stored in lower address,
then the next byte, then the next byte, and then the next byte. And here the higher order
address higher order byte is stored lower address, then the next byte then the next byte
and then this one. So, just see the difference between these two in little endian what we
are storing; this is the least significant byte, we are storing in the least address that is
2000 and then the next one, next one, next one. In a similar way, the most significant

byte we are storing it in the lower address and so on.

(Refer Slide Time: 18:23)

Memory Access by Instructions

= The program instructions and data are stored in memory,
= |& S0 NERTAR D ARLRITECIusE, TRES &P e P10FED 1™ [SaiE mMEmiony
= InMarvard architectiare, they are stored o ditferant memariss

o e g thi (AR AL LLE Wi s I:-|H'I|IrII:-II"-| areg II'ILIIIIl":J

al Load: The camtemts of & specilied meamady WCanian & réad @io a
OrOCE ar Mg ner (EAD B AN
Bf ¥ore: The contenti o & gracesiar reginber 14 wrdken inbo a spedifed

mmary kacation el K

T, (il
LR FEARCH LU

Let us see memory access by instructions. Now, as I said that the program and instruction
in the program instructions and the data are stored in memory. So, there are two basic
ways how this can be stored. One is von-Neumann architecture, they are stored same in
the same memory both the program and the data are stored in same memory. In Harvard

architecture, they are stored in different memories.

So, for executing the program two basic operations are required. What are the two basic
operation we need to know this. Load the content of specified memory location. So,
LOAD R1,2000 means load the content from memory location 2000 into processor
register R1. Another one is STORE R3,2010 that means store the content of R3 into this
specific location 2020. So, either we load a data from memory into one of the processor

registers, or we store the data from processor register to some location in memory.

(Refer Slide Time: 20:11)

An Example

= Computes=[(&+ 8)—(C -0
LafiT 1.
LAl E2B
FARE] Hi k] HS FHA = ji+ B
i =51
LA R0
SUR RAL R SIRd=C-D
LI HENHY NS FINY =N =Na

STOWRE LR

T, i
LR FEASCH LU

Now, let us take an example. Suppose we need to execute this particular instruction. We
need to compute this. S, A, B, C and D are stored in memory. So, what we need to do is
we need to load individual data, that is A and B and then only we can execute it. So, let
us see what are the steps that are required to execute this. First of all let us do A + B. For
this, I need to load first A into some processor register, B into some processor register
and then add tyem. So, LOAD R1,A will load the content of A into R1; LOAD R2,B will
load the content of B into R2. The ADD instruction will add the content of R1 and R2,

and store the result in R3. So, this portion is done.

Next I load C into R1, D into R2, then I subtract C, I subtract D from C, and then I store
the result in R4. Now, A + B is stored in R3, C - D is stored in R4, and now I need to
subtract them. SUB R3,R3,R4 will cause the result to be stored in R3. But finally, I have
to store the result in another location, that is S. So, what I should do now I have to store

the content of R3 into S.

(Refer Slide Time: 22:58)

Machine, Assembly and High Level Language

* Maching Languags
Malnge Lo b e daiissod deeiuléd direcy By hardypaie

Il st lsping Comyisd OF Dirsgrg Obdg, 1+ arksi 1fy

* Augsmbly Langusge

= Liord-lFad Ay & il Sl FET N RS

= Orew bo ons corrsaporsdenss with mackine banpa s

= Pasisdo inatructicnnars v chas aee miich i reddahle and eauyto wee
2 High-Livel LaPguige

= Frogremming lmguage L, o, Rya

= Maorereadable and doser o human lanpu s

BT, i
LEHTFFLARCH LU

Now, let us also understand what is machine language, assembly language, and high
level language. Machine language is native to a processor and it is executed directly by

in hardware. So, it only consists of binary code 1s and Os.

(Refer Slide Time: 23:29)

, i)
ADD R, LA
- t.ll I
alanl LR . OE0p a1 08 (pon s A%
: : .
AR "I.ll'r”" [| } bk A .I".J

) @y]
[""ﬁ 1,0 | :
| |

" TR PR

So, I have talked about this if you remember that let say this is my instruction. Again I

take the same example ADD R1,LOCA and as I said this can be 01001 (5-bit), this can

be a 4-bit number, and this can be a 12-bit number. So, what I am specifying I am

specifying the entire instruction in a sequence of Os and 1s. So, when I specify an

instruction in the form of Os and 1s, is called machine language, which is native to

processor executed directly by hardware.

Next is assembly language. It is also a low-level symbolic version of machine language.
Instead of Os and 1s, I write it symbolically as ADD RI1,LOCA. When I represent
something symbolically; instead of writing Os and 1s, I am writing it with some

mnemonics.

So, this language is a low-level symbolic version of machine language; one to one
correspondence with machine language is there. Pseudo instructions are used that are
much more readable and easier to use. What do you mean by much more readable and
easier to use? That means it will be difficult for me to remember 0110 is add, but it will
be very much easy for me to remember the mnemonic ADD. So, I can write an
instruction ADD R1,R2. So, this is much easier way to represent a program. So,
assembly language is nothing but some kind of one-to-one correspondence with machine

language.

Next comes to high-level language. Now, you see if you have to add ten numbers or you
have to sort some list in an array, you need to perform certain operation. Again writing
such kind of language where we say that first sum of 10 numbers you have to initialize it
and then you have to repeatedly add it. So, there will be set of more instruction that are
required to perform an add operation; rather for adding 10 numbers, I can very easily

write let say for (i=0; i<10; i++), sum = sum + a[i]. So, this is much more easier to code.

So, generally high-level languages basically the programming languages like C or C++
or Java are used which are much more readable and closer to human languages. So, we
can we can write a program in a high-level language and that can be executed by your

machine.

(Refer Slide Time: 29:04)

Assemblers and Compilers

= Assembler
= Trmnalatss an suismbly lengusge program to mechins nguags
* Compller
= Tranglate s high-level langesgs pragrami to speembly/ maching Engusgs
« Thetranilation 3 dane by the compiler directly, or

= Thg cpmpilar ey tramelates 1o §4iaminly lar R &l [an Tha
aEpwmbler oomesrte it to maching cods

T, i B il IATTRITE O
LR ¥ FLARCH LU T HMOLULT, BN,

Now, if you have to execute a high-level language then you need some kind of translator
that should translate your high-level language to assembly language or machine level
language. So, these are the two things which are required, one is assembler that translates
an assembly language program to machine language; and compiler that translates a high
level language program to assembly or machine language. So, the translation is done by
compiler directly or the compiler first translates to assembly language, and then an
assembler can convert to a machine language, but ultimately you need to have machine
language code to execute your instruction. So, any high-level language you write
ultimately you have to boil down it to machine language that can only be understood by

your computer.

(Refer Slide Time: 30:10)

Compiler and Assembler

High: bl

FNELART —l

|:.- T -ﬂ:' Hgdmaly -'—l AlvErmnative 1
. LR FNELARE I

Tl T, T
LR FRARCH LU

So, as I said this compiler you have high-level language and then you can directly have a
compiler that will generate an assembly language. And then that assembly language will
be fed to an assembler that will generate a machine language or directly you can have a
compiler that will generate your machine language, these are the best two alternatives

that happens.

(Refer Slide Time: 30:39)

a2 The oo piler of Siiembler mEy ran 09 the metive machiae for whiih tha
Eargat code g being genarated, or can be run on sngther maghing
== L il ERTLEL 3, 0 o T
+ Examiplal &s BORS eradi-aidermbber s running an a deiktap PC which
prnarated 2085 maching coda.
v Esamipled; &An ARM smibed-C crome compiler ip runining on deskiop PC

which gensrates ARK maching cods for sn embedded develapmant
Bigmrd

Tl T, T
LR FRARCH LU

Now, we you can also have something called cross-assembler or cross-compiler. What it

does like the compiler or assembler may run on a native machine for which the target

code is being generated or can run on any other machine that means. Take an example
where you have an 8085 cross-assembler which is running in your desktop machine. And
what it generates is some 8085 machine codes. Similarly, an ARM embed-C compiler
which is available online may be running on a desktop PC which generates ARM

machine code for the embedded development board.

So, by this I will end lecture 3. So, in this lecture what we have discussed is how
memory is organized, what are the ways to store the data in the memory. And we also
looked into what are the steps that are required to transfer an instruction from one level
to another like from high-level language, how it is converting into machine language
through some compiler, how from assembly language it is converted into machine

language and what is a machine language.

Thank you.

