
Computer Architecture and Organization
Prof. Kamalika Datta

Department of Computer Science and Engineering
National Institute of Technology, Meghalaya

Lecture - 03
Memory Addressing and Languages

(Refer Slide Time: 00:29)

Welcome to the third lecture on memory addressing and languages. So, let us know about

the overview of memory organization. What is memory? Memory is one of the most

important subsystems of a computer that determines the overall performance. What do

you mean by that? See as you have seen in the previous lecture that we are storing the

instruction and data in the memory. If your memory is slower then loading the data from

the memory will be slower. So, in that case we need to have a good speed memory. The

conceptual view of memory is it is an array of storage locations with each storage

location having a unique address. So, it is an array of memory locations.

(Refer Slide Time: 01:30)

So, as I said it is an array of memory locations. So, we have first location as 0 0 0 0, next

location as 0 0 0 1 and so on, maybe the last location is 1 1 1 1. So, it is an array of

storage location each with a unique address. So, these are individual locations and this is

the address associated with each location. And each storage location can hold a fixed

amount of information, which can be multiple of bits which is the basic unit of data

storage. A memory system with M locations and N bits per location is referred to as an M

x N memory, where both M and N are typically some powers of 2. An example: 1024 x

8.

So, if I say 1024 x 8, it means we have 10-bit in the address, and each location is having

8-bit. So, you can store these many locations in these many locations; this shows how a

memory will look like.

(Refer Slide Time: 03:53)

Now, some terminologies you must know when we talk about memory. What is a bit, we

all know a bit is a single binary digit either 0 or 1. Nibble is a collection of 4 bits. Byte is

a collection of 8 bits. And word does not have a unique definition because we can either

have a 32 bit word length or 64 bit word length. So, word does not have a unique

definition.

(Refer Slide Time: 04:29)

Now let us see how is memory organized. Memory is often byte organized. So, we never

say that each bit is having an address, rather we say each byte is having an address, that

means every byte of the memory has a unique address. And multiple bytes of a data can

be accessed by an instruction. I will just take an example: ADD R1,LOCA. So, if you

consider this instruction, it is depending on how many bits this ADD will have, how

many bits this register will have, and how many bits this location will have; this will

define that how many words this instruction will have or how many bytes this instruction

will have.

So, in that sense what I am trying to say is that how many bytes this instruction will take

is dependent on various other factors like the total number of instructions available in

your computer. The total number of registers present in your computer, and also the

number of locations you are having based on which you can determine the number of

bytes required to represent this particular instruction.

For higher data transfer rate, memory is often organized such that multiple bytes can be

read or written simultaneously. This is basically needed to bridge the processor memory

speed gap; we shall of course discuss this later, but I will just tell very briefly about this

memory processor speed gap. So, as you know that processor speed is increasing

memory speed is also increasing, but not at this pace the processor is increasing.

(Refer Slide Time: 07:06)

So, this picture will show you the processor memory performance gap. See with

technological advancement both processor speed is increasing and also memory speed is

increasing; however, there is a speed gap which is steadily increasing. So, earlier the

speed gap was much less, but now with technological advancement CPU speed has

increased to a greater extent; memory speed has also increased, but not at the same pace

as the CPU. So, we can see this.

So, some special techniques are used to bridge this gap. We will see this in the memory

module design, where the concept of cache memory and memory interleaving will be

talked about, but from this we can see what we can say is that there is a still huge gap

between the speed of a processor and speed of your memory. So, this is where we have to

agree upon that. We are still in the phase we are growing we are trying to make certain

techniques to bridge this gap, but still this gap exists.

(Refer Slide Time: 08:40)

Now, how do you specify memory sizes. Memory sizes can be 8 bit which is a byte. It

can be kilobyte 210; it can be megabyte 220; gigabyte 230; terabytes 240, and many more

like petabyte, exabyte and zettabyte.

(Refer Slide Time: 09:09)

Now, you see if there are n bits in an address, the maximum number of storage locations

that can be accessed is 2n.

(Refer Slide Time: 09:31)

This is a small example, we will take n = 3. So we can say how many locations we can

access; 23 = 8. So, the first location will be 0 0 0, the next location will be 0 0 1, next will

be 0 1 0, 0 1 1, 1 0 0, 1 0 1, 1 1 0 and 1 1 1. So, with n bits we can have 2n locations that

can be accessed.

So, if we have 3 bit in the address, so maximum location that can be accessed is 8. So,

for n = 8, 256 locations (28); for n = 16, 216 = 64K locations; for n = 20, 1M locations,

etc. can be accessed. So, this diagram shows the address bits; if you have n bit address

we can have 2 to the power n locations that can be accessed. And modern-day memory

chips can store several gigabytes of data that is our dynamic RAM. We will be looking

into more details about each and every aspect of memory module.

(Refer Slide Time: 11:33)

Now, as I said for an 8 bit address, 2 to the power 8 unique locations will be there. The

first locations will be all 0s, and the last location will be all 1s; and each of these

locations again will have some content. So, consider an example of 28 x 16 memory. So,

in each of these locations we will have some data which is 16 bits.

(Refer Slide Time: 12:02)

Let us see a computer with 64 MB of byte addressable memory. How many bits are

needed in the memory address? As I already said, that 64 MB = 226 ; that is, we need 26

bits to represent the address. Now, let us take another example where we say a computer

has 1 GB of memory. So, we are saying total of 1 GB of memory, each word in this

computer is 32 bit.

(Refer Slide Time: 13:18)

So, 1 GB = 230. If each word is 32 bits, that means 8, 8, 8, 8. So, total words possible will

be 230 / 4 = 228. So, we require 28 bits, with address from 0 to 228-1. If it is byte

addressable, each byte can be accessed with address from 0 to 230-1.

(Refer Slide Time: 15:02)

Now, let us also understand what is byte ordering convention. Many data items require

multiple bytes for storage. And different computers use different data ordering

convention, it is known as low order byte first and high order byte first. So, these two are

called basically Little Endian and Big Endian. So, you see this data type character is 1

byte, integer is 4 byte, long integer is 8, floating point 4 and double precision is 8. Thus

if you have a 16 bit number which is represented like this, so in one way this is the total

number high order bit is stored in high order address, and the low order is stored here

and so on here it is stored differently. This is stored first and this is stored next.

(Refer Slide Time: 16:13)

So, let us see the convention that has been named as little endian. The least significant

byte is stored at lower address followed by most significant byte. So, Intel processors

DEC alpha they all use little endian method, where again I repeat least significant byte is

stored at lower address. Now, same concept follows for arbitrary multi-byte. So, if you

also want to store multi byte then the same thing will follow there also. Now, in big

endian the most significant byte is stored at lower address followed by least significant

byte. So, the most significant byte is stored at lower address followed by least significant

byte. IBM’s 370 mainframe uses big endian concept.

(Refer Slide Time: 17:14)

Now, let us see this representation with this example of a 32-bit number both in little

endian and big endian. So, this is the number and lower byte is stored in lower address,

then the next byte, then the next byte, and then the next byte. And here the higher order

address higher order byte is stored lower address, then the next byte then the next byte

and then this one. So, just see the difference between these two in little endian what we

are storing; this is the least significant byte, we are storing in the least address that is

2000 and then the next one, next one, next one. In a similar way, the most significant

byte we are storing it in the lower address and so on.

(Refer Slide Time: 18:23)

Let us see memory access by instructions. Now, as I said that the program and instruction

in the program instructions and the data are stored in memory. So, there are two basic

ways how this can be stored. One is von-Neumann architecture, they are stored same in

the same memory both the program and the data are stored in same memory. In Harvard

architecture, they are stored in different memories.

So, for executing the program two basic operations are required. What are the two basic

operation we need to know this. Load the content of specified memory location. So,

LOAD R1,2000 means load the content from memory location 2000 into processor

register R1. Another one is STORE R3,2010 that means store the content of R3 into this

specific location 2020. So, either we load a data from memory into one of the processor

registers, or we store the data from processor register to some location in memory.

(Refer Slide Time: 20:11)

Now, let us take an example. Suppose we need to execute this particular instruction. We

need to compute this. S, A, B, C and D are stored in memory. So, what we need to do is

we need to load individual data, that is A and B and then only we can execute it. So, let

us see what are the steps that are required to execute this. First of all let us do A + B. For

this, I need to load first A into some processor register, B into some processor register

and then add tyem. So, LOAD R1,A will load the content of A into R1; LOAD R2,B will

load the content of B into R2. The ADD instruction will add the content of R1 and R2,

and store the result in R3. So, this portion is done.

Next I load C into R1, D into R2, then I subtract C, I subtract D from C, and then I store

the result in R4. Now, A + B is stored in R3, C - D is stored in R4, and now I need to

subtract them. SUB R3,R3,R4 will cause the result to be stored in R3. But finally, I have

to store the result in another location, that is S. So, what I should do now I have to store

the content of R3 into S.

(Refer Slide Time: 22:58)

Now, let us also understand what is machine language, assembly language, and high

level language. Machine language is native to a processor and it is executed directly by

in hardware. So, it only consists of binary code 1s and 0s.

(Refer Slide Time: 23:29)

So, I have talked about this if you remember that let say this is my instruction. Again I

take the same example ADD R1,LOCA and as I said this can be 01001 (5-bit), this can

be a 4-bit number, and this can be a 12-bit number. So, what I am specifying I am

specifying the entire instruction in a sequence of 0s and 1s. So, when I specify an

instruction in the form of 0s and 1s, is called machine language, which is native to

processor executed directly by hardware.

Next is assembly language. It is also a low-level symbolic version of machine language.

Instead of 0s and 1s, I write it symbolically as ADD R1,LOCA. When I represent

something symbolically; instead of writing 0s and 1s, I am writing it with some

mnemonics.

So, this language is a low-level symbolic version of machine language; one to one

correspondence with machine language is there. Pseudo instructions are used that are

much more readable and easier to use. What do you mean by much more readable and

easier to use? That means it will be difficult for me to remember 0110 is add, but it will

be very much easy for me to remember the mnemonic ADD. So, I can write an

instruction ADD R1,R2. So, this is much easier way to represent a program. So,

assembly language is nothing but some kind of one-to-one correspondence with machine

language.

Next comes to high-level language. Now, you see if you have to add ten numbers or you

have to sort some list in an array, you need to perform certain operation. Again writing

such kind of language where we say that first sum of 10 numbers you have to initialize it

and then you have to repeatedly add it. So, there will be set of more instruction that are

required to perform an add operation; rather for adding 10 numbers, I can very easily

write let say for (i=0; i<10; i++), sum = sum + a[i]. So, this is much more easier to code.

So, generally high-level languages basically the programming languages like C or C++

or Java are used which are much more readable and closer to human languages. So, we

can we can write a program in a high-level language and that can be executed by your

machine.

(Refer Slide Time: 29:04)

Now, if you have to execute a high-level language then you need some kind of translator

that should translate your high-level language to assembly language or machine level

language. So, these are the two things which are required, one is assembler that translates

an assembly language program to machine language; and compiler that translates a high

level language program to assembly or machine language. So, the translation is done by

compiler directly or the compiler first translates to assembly language, and then an

assembler can convert to a machine language, but ultimately you need to have machine

language code to execute your instruction. So, any high-level language you write

ultimately you have to boil down it to machine language that can only be understood by

your computer.

(Refer Slide Time: 30:10)

So, as I said this compiler you have high-level language and then you can directly have a

compiler that will generate an assembly language. And then that assembly language will

be fed to an assembler that will generate a machine language or directly you can have a

compiler that will generate your machine language, these are the best two alternatives

that happens.

(Refer Slide Time: 30:39)

Now, we you can also have something called cross-assembler or cross-compiler. What it

does like the compiler or assembler may run on a native machine for which the target

code is being generated or can run on any other machine that means. Take an example

where you have an 8085 cross-assembler which is running in your desktop machine. And

what it generates is some 8085 machine codes. Similarly, an ARM embed-C compiler

which is available online may be running on a desktop PC which generates ARM

machine code for the embedded development board.

So, by this I will end lecture 3. So, in this lecture what we have discussed is how

memory is organized, what are the ways to store the data in the memory. And we also

looked into what are the steps that are required to transfer an instruction from one level

to another like from high-level language, how it is converting into machine language

through some compiler, how from assembly language it is converted into machine

language and what is a machine language.

Thank you.

