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Welcome to week 6. In this week we will be looking into Memory Hierarchy Design, and

of course cache memory. In previous week we discussed about memories, we discussed

about static memories, dynamic memories, RAM; we also discussed about how we can

actually  design  larger  memory modules  from smaller  memory modules  and memory

interleaving.

In  this  week  we  will  be  looking  mostly  into  how  we  can  make  memory  faster  by

incorporating some strategies. One of the methods that we will be seeing in more detail

is the cache memory. And we will also be focusing on memory hierarchy design.

(Refer Slide Time: 01:37)

The programmers always want unlimited amount of memory with a very low latency. We

need high speed and we also need more memory. We have also seen that fast memory

technology  is  more  expensive  per  bit  than  slower  memory.  SRAM  is  much  more

expensive  than  DRAM,  but  DRAM is  again  more  expensive  than  disk.  So,  SRAM

cannot  be  made  much  larger,  where  DRAM can be  made  much  larger  compared  to



SRAM. Again DRAM cannot be made as large as disk, and disk speed cannot match the

speed of DRAM.

So, what is the possible solution? Organize the memory system in several levels, which

is called memory hierarchy, and exploit both temporal and spatial locality of computer

programs. We will look into the details of what is temporal and spatial locality. And we

also try to keep the commonly accessed segment of programs or data in a faster memory

called  cache  memory. So by this,  what  we mean  is  that  the frequently  used data  or

instructions can be kept in a high speed memory, because a particular data which I am

requiring now it might happen I will be requiring it after some time again.

So, instead of keeping it in a slower memory let us keep it in a fast memory and as and

when required by the processor it can get it from the faster memory and not from the

slower memory.

(Refer Slide Time: 03:51)

This  results  in  faster  access  time on an average.  Let  us  have  a  quick review of  the

memory technology that we discussed last week. Static RAM, which is very fast but

expensive  memory  as  it  requires  6  transistors  per  bit,  and  the  packaging  density  is

limited. So, within a small area we cannot have very large memory in place. Whereas,

dynamic RAM is significantly slower than SRAM, but much less expensive that is only

one transistor per bit is required. And it also requires periodic refreshing which is not

required in static RAM.



So,  DRAM is  much  slower  than  SRAM, but  it  is  much  less  expensive,  and also  it

requires periodic refreshing which is not required in SRAM. And flash memory is a non-

volatile  memory  technology  that  uses  floating  gate  MOS transistors.  It  is  of  course

slower than DRAM, but has higher packaging density and lower cost per bit.

(Refer Slide Time: 05:09)

And magnetic disk provides large amount of storage and the cost per bit is also pretty

less, but it is much slower than DRAM and also flash memory. And compared to other

memories  this  requires  a  mechanical  moving  part  and  uses  magnetic  recording

technology. The disk moves around and we actually get the data from different tracks and

sectors. So, there is a moving part, whereas in DRAM or SRAM no such thing is there.



(Refer Slide Time: 05:53)

Coming to memory hierarchy, the memory system is  organized in several  levels.  By

hierarchy we mean it is divided into many levels using progressively faster technologies

as we move towards the processor. Thus there are different levels of memory, and the

level  that  is  closest  to  the  processor  is  faster,  and  which  are  little  further  from the

processor are slower. 

The entire addressable memory space is available in the largest, but slowest memory;

typically magnetic disk or flash storage. The addressable space can be as large as data on

the disk, but we are actually implementing the levels one by one. So, at the lowest level

where we have cache that is much smaller, then we go to next level which can be L2

cache or it can be main memory, it can be little larger. But how we can speed up? We can

transfer data by replacing the data that is currently in that particular fast memory we will

move it to the slower memory, again from the slower memory will bring to the faster

memory. This is how we perform the things.

So, we incrementally add smaller, but faster memories each containing a subset of data

stored in memory below it. We proceed in steps towards the processor.



(Refer Slide Time: 08:09)

Let us see this. Typical hierarchy starts with the one closest to processor, which are the

processor  registers.  Then  we  have  Level-1  cache,  typically  divided  into  separate

instruction and data cache.  We have already talked about Harvard and von Neumann

architecture in the first week. If you recall we said that if we have separate data and

instruction memory, then instruction fetch and data access can be done at the same time.

So, we typically divide Level-1 into instruction cache and data cache; we can have level

2 cache, then level 3 cache, we then have main memory, and finally we have secondary

memory. So, processor cache will be the smallest one, then the level 1 cache and so on,

the secondary memory will be the largest memory.

As we move away from processor the size increases. So, this is the smallest one, then the

size increases little more, little more. The cost also decreases, because as you are closest

to the processor it is much faster, but as we are moving away from the processor the cost

slowly decreases, but at the same time the speed also decreases. So, this is the trade off

you can see.
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Let us see this. This is processor register, level 1 cache; we have instruction and data

cache, then level 2 cache, level 3 cache, main memory and magnetic disk. As we move

from processor to magnetic disk the size increases, so the size of magnetic disk is the

maximum. But as you move up the speed increases as well as the cost increases; so the

cost  becomes  much  more  as  you  are  moving  to  the  memory  that  is  closest  to  the

processor.

(Refer Slide Time: 10:58)



So, this is basically a pyramid structure that shows registers, then level 1 cache, then

level 2 cache, and so on. So, the size is increasing, but there are few things that are also

decreasing with the size.

(Refer Slide Time: 11:18)

Now, this is a comparison that has been made. For registers the typical access time is of

the order of picosecond, level 1 cache this is 1 to 2 nanosecond, level 2 cache is 5 to 20

nanosecond. So, the access time is increasing slowly, and at the same time if you see the

capacity, it is also increasing. The L1 cache and L2 cache can be on chip and L3 can be

off chip or it can also be on chip.



(Refer Slide Time: 12:02)

So, what is the major obstacle in memory system design? We have already seen this slide

before. Processor is much faster than main memory; this is the growth of the processor

speed and this is the growth of the memory. So, basically you see this gap is always

increasing. So, memory speed cannot be increased beyond a certain point that is why we

are coming up with many techniques through which we can actually increase the speed. 

(Refer Slide Time: 12:54)

Let us see the impact of processor and memory performance gap over the years. You can

see this is the CPU clock, this will be the clock cycle time, and this is the memory access



time. So, what is happening is that the clock cycle time and the memory access time gap

is increasing; the processor clock speed is becoming higher, with that the clock cycle

time is getting reduced, but the gap between clock cycle time and the memory access

time is more.

The minimum CPU stall cycles can be given by this. The data is provided till 2004 that

shows that minimum CPU stall cycle will be 179. 

(Refer Slide Time: 14:21)

Memory latency reduction techniques say how we can reduce the access time. If it is

reduced what are the techniques that can be used. One is faster DRAM cell  that will

depend on VLSI technology, and wider memory bus width with fewer memory access

needed. So, we access once and we get the data all together.

So, actually you are using multiple memory banks with memory interleaving, integration

of  memory  controller  with  processor,  we  can  also  use  some  emerging  RAM

technologies. And under memory latency hiding techniques we have memory hierarchy

using SRAM-based cache memory. So, we are having a fast memory and we will see that

most of the access will be made to this particular memory. Prefetching instruction or data

from memory before they are actually needed will also help. Prefetching is a technique

that can be used to hide this memory latency.



(Refer Slide Time: 15:50)

Now, we come to locality of reference. There is a property that programs tend to reuse

data and instruction they have used recently; that means, an instruction that is used at

time t it is much likely that it will be used again at some point of time very soon. This is

called locality of reference; the rule of thumb says that 90% of the total execution time of

the program is spend in only 10% of the code. This is called 90/10 rule.

So, only 10% of the code is been used because of loops. If you consider a loop where

certain statement and certain instructions are getting executed repeatedly. If we bring

those instructions into some faster memory, you can actually have a better access time

because you have brought the data from a slower memory into a faster memory, and now

you are accessing repeatedly from the faster memory. That is why cache can be helpful in

such scenario although we are bringing the data from one memory to another memory,

but in turn we are getting advantage out of it.
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Let us say this is an array of 100 elements. So, you will access first element, you will

access next element, and so on. So, actually you are making an access to some memory

location let us say 2000, then 2004, and so on. So, if an instruction or data is required

which is in some location, it is expected that data in the nearby locations is also required

in the near future. So, instead of bringing only this we can bring the whole set of array

together into the cache. So, this is where it helps and this locality of reference is coming

into picture. So, there are two things; we call it spatial locality of reference and temporal

locality of reference.

The basic idea is that based on program’s recent past we can predict with a reasonable

accuracy what instructions and data will be accessed in near future.



(Refer Slide Time: 19:35)

The 90/10 rule has two dimensions, one is called temporal locality --- locality in time;

that means, if I am accessing an element at time t it is likely that I will be accessing that

same element at time t + something. So, if an item is referenced in memory it will tend to

be referenced again very soon because of loops. 

So, if an item is referenced in memory nearby items will tend to be referenced soon; that

means, let us say we have written a code and that code takes some, say 20 words, to store

that particular program. Now, if you take one word at a time it will not help because

when you are bringing one particular word it is likely that we require 19 more words

associated with that program. So, why not to bring the entire thing into cache memory

such that next time when you are accessing you will get it from the cache memory and

not from the main memory. So, this is spatial locality.



(Refer Slide Time: 21:11)

Let us take this example of temporal locality; recently executed instructions are likely to

be executed again very soon. The example is computing factorial of a number. 

It says that because of loop structure this instruction will not be required for us to bring it

from a slower memory, because we will bring it once from slowest memory to fastest

memory and then we will keep it there. So, this is temporal locality this is an example of

temporal locality.

(Refer Slide Time: 24:04)



Now,  let  us  see  spatial  locality.  Instructions  residing  close  to  recently  executing

instructions  are  likely  to  be  executed  soon;  that  means,  this  instruction  is  in  close

proximity of other instruction. So, if I am bringing this particular instruction it is also

better  that  we  bring  some  more  instruction  that  is  in  the  close  proximity  of  this

instruction.

 (Refer Slide Time: 26:58)

We first consider a 2 level hierarchy consisting of two levels of memory, say M1 and

M2. CPU is first hitting M1, and if it is found here it will take it send the data to CPU,

and if it is not found it is brought from M2 to M1, and then may be transferred to CPU.



(Refer Slide Time: 27:26)

So, how we can calculate the cost? Let ci denote the cost per bit of memory Mi, and Si

denote  the  storage  capacity  in  bits  of  Mi.  The  average  cost  per  bit  of  the  memory

hierarchy is given by this expression. 

What we are trying to say is that c will be roughly equivalent to c2; that is, cost should

be less, but for that we must ensure that S1 is much less than S2, the size of M1 memory

should be less than size of M2.

(Refer Slide Time: 28:49)



Coming to hit ratio or hit rate what do you mean by that? The hit ratio H is defined as the

probability that a logical address generated by the CPU refers to information stored in M.

(Refer Slide Time: 29:15)

So, let us see this; this is your CPU and you have M1 level and you have M2 level, and

we are saying the CPU will be hitting this particular memory first. This means CPU will

hit M1 and it will get the data from M1; that is hit ratio. So, the percentage time the data

is found in M1 is the hit ratio.

So, hit ratio H is defined as the probability that logical address generated by the CPU

refers to the information stored in M1; that means, the data which I am looking for is

present in M1. We can determine H experimentally as follows. A set of representative

programs is executed or simulated; then the number of references to M1 and M2 denoted

by n1 and n2 respectively is measured, and then hit ratio can be n1 divided by n1 + n2.

The quantity 1-H is called the miss ratio; that means, the number of times it is not found

in M1 cache.



(Refer Slide Time: 31:10)

So, now let us see the access time. Let tA1 and tA2 denote the access times of M1 and

M2 respectively relative to CPU. How we can actually tell the average time required by

CPU to access the word. It is given by this expression.
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The miss penalty tmiss can be estimated in various ways. The simplest approach is to set

tmiss as tA2, that is, when there is a miss the data is accessed directly from M2. So, a

request for a word not in M1 typically causes a block containing the requested word to



be transferred from M2 to M1. After completion of the block transfer the word can be

accessed from M1.

When accessing a particular word, generally we do not transfer a single word rather we

transfer  a  block  of  word.  So,  the  block  containing  that  particular  word  should  be

transferred to the cache, and then from the cache it will be transferred to the processor.

So,  this  is  what  is  said  a  request  for  the  word  not  in  M1 typically  causes  a  block

containing the requested word to be transferred from M2 to M1.

So,  first  the block is  transferred from M2 to M1,  and after  completion  of  the block

transfer  the  word  can  be  accessed  in  M1.  tB  denotes  the  block  transfer  time.  The

expression is shown.
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Now, what  is  efficiency?  Let  us  consider  r  as  the  access  time  ratio  of  the  2  levels.

Efficiency is defined as shown in the expression.
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Now, coming to speedup, the speedup gained by using memory hierarchy is time-old

divided by time-new. 
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So, there are some common terminologies that we must know for rest of the lectures for

this  week. What  is  block?  ---  the smallest  unit  of information  transferred between 2

levels. Hit Rate --- the fraction of memory accesses found in upper level. Hit Time --- the

time to access the upper level. And so on.



So, these are some of the terminologies that we will be using throughout the week 6

lectures.

Thank you.


