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Lecture - 27
Memory Interfacing And Addressing

Welcome to lecture 27 on Memory Interfacing and Addressing. Till  now we came to

know how semiconductor memory is built what are the technologies used. In this lecture

we will see that we have a memory chip available to us, but we want to built a larger

memory system, how we can do that. This is one thing we will be seeing in this lecture.

Another thing that we will be looking into is that how we can further increase the speed

of this memory.
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Memory interfacing is the basic problem of how we can interface one or more memory

modules to the processor. Here we assume that we have a single level of memory at

present, so no cache memory for the time being. The question that is to be answered here

is  how the  processor  address  and data  lines  are  connected  to  the  memory  modules.

Because now we are saying that we will not be having one single memory chip, rather

multiple memory chips to make that memory, how the address and data lines from the

processor will be connected to this. How are the addresses decoded, how the decoding of

the address will take place? Because here you have to select and module and then select



an address within that module. How are the memory addresses distributed among the

memory modules that also we will be looking into, and how to speed up data transfer

read between processor and memory?

So, these are the four things that we will be seeing in this lecture.
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As we know that for an n-bit address bus we can have 2n memory locations, and m data

bus we have read write and control signal. And now this memory address register and

memory buffer register connected through address and data lines to the primary memory.

So, this is the processor’s view of the memory, and of course, we have some control

lines.

Now we will  be seeing that  now this  primary memory or whatever  memory we are

talking  about  will  be connected  with this  address line and this  data  line.  So,  typical

interface of the memory module real chip may contain more signal lines, so that is what

we need to see.
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A note about this memory interface signal is that the data signals of the memory module

are typically bidirectional, we have seen that the data bus is bidirectional because from

memory also, some data can be passed to the data bus and written into memory, and from

memory we read a data that comes to the data bus. So, it is bidirectional.

Some of the memory chips may have separate data in and data out lines. For a memory

read operation  what  happens?  The address  of  the memory location  is  applied  to  the

address lines. Then for reading the signal this read/write signal will be set to 1 and the

chip select is set to 0. Data is read out through the data lines after memory access time

delay.

Similarly for a write operation,  the address of the memory location is  applied to the

address line. The data to be written has to be written to put on the data lines. And then

this read/write control signal is set to 0, and chip select is set to 0 again.
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So, why is this chip select signal required? It is not required if you have a single module.

It will be required only when you have multiple modules and you have to select one

particular module from multiple modules. What happens when chip select is 1?

So, when the chip select line is 1, then the memory module is not selected and the data

lines  are set  to high impedance  state;  that  is  electrically  disconnected.  Let  us see an

example scenario. Here chip select is 0 so memory module is selected, and here this chip

select is 1; so this memory module is not selected. Let us take an interfacing problem

where we consider that.
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So, before taking an interfacing problem I will take a small  example to show how a

larger memory is built from smaller memory.
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Let us take this example. In this example we have to find out how many 128 x 8 memory

RAM chips are needed to provide a memory capacity of 2048 x 8. Basically all you need

to do is that you will divide this by this and you will get the number of memory chips

required to build that; that is coming to (2048 x 8) / (128 x 8) = 16. So, we require 16

chips to built up 2048 x 8 memory.



Now, 2048 is  your  total  memory that  is  211,  so we need to have 11 bits  total  in the

memory address. So, total address bit is A0 to A10. Now each module you have a smaller

chip which is 128 x 8. So, this module is 128, that is 27. So, here you require 7 bits to

select a particular row. So, once a particular row is selected then this set of 8 bits can be

transferred, because one chip is 128 x 8. So, the total address bit is now 11.

How this total address bit will be divided? We have already seen that, total address bit

now here it is 11 we need to select a particular row first. In this case how many rows are

there, how many chips are there in total? We have 16 total chips. So, we require a 4 x 16

decoder to select a particular chip. So, the high order 4 bits that is A10 to A7. So, the

total address bit will be A10, A9 to A0 this is the total address bit 11. The high order 4

bits A10 to A7 will be connected to this 4 x 16 decoder that will select one of these 16

chips that is available. So, we have total 16 128 x 8, starting from 0 to 15. Now the

output of this decoder is connected to all these chips.

Now see in the individual chip how it is organized it is organized as 128 x 8. So, the

lower order 7 bits that is A0 to A6 will be connected to all the chips. So, we will first

apply high order 4 bits of the total addresses to the decoder, it will decode and it will

select any one of the chips, let us say this particular chip is getting selected.

Once this  chip gets selected then we have to select  one location from this chip,  one

particular row from this particular chip that will be A0 to A6. If it is the last location then

the value will be 1111111. So, it will be this particular chip and the last location that is

the location is 1111111.

So, this is the data bus connected here. So, this is how we can actually make a larger

memory chip from a smaller memory module.
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We will take another example where we will see that we need a capacity of 2048 x 16

and we have a chip which is 128 x 8. So, we have a same 128 x 8 and we need a memory

capacity of this much. So, if you divide this by this how many chips do you require? You

will be requiring 32 chips. So, we require 32 128 x 8 chip to built a memory capacity of

2048 x 16. So, let us now see again there are 11 bits in the address, how those 11 bits will

be organized. In the same way high order 4 bits will be connected to the decoder to select

any one of the 16 chips, but we have a total of 32 chips.

So, this decoder is now see it is connected to both the chips in the same row. So, this is a

row in this particular row when I give 0 0 0 0 then this chip gets selected and also this

chip gets selected simultaneously because both are connected. Now once we select this

chip now I will apply the lower order bits, that is A0 to A6. So, whatever address we put

in the lower order address bit it goes to this particular chip and it goes to this particular

chip as well. So, from here a group of 8 bits will come out, and from here a group of 8

bits will come out.

So, this is how we can organize even larger memory from a smaller memory module.

Now let  us take this  a  little  bigger example.  So,  here we will  consider  a MIPS like

processor with 32-bit address; maximum memory that can be connected is 232 that is 4

GB. And the assumption is that the processor data lines are 8 bit.



So remember this, the processor data line is 8 bit. Assume that the memory chips are

available with size 1 GB and we need a maximum memory, we need to build a memory

that is 4 GB. So, roughly how many chips will be required? We will be requiring four

chips.  For 1 GB, 30 address lines and 8 data  lines  are required.  So, lower order 30

address line A0 to A29 are connected to the memory modules.

And now we want to interface for such chips to the processor. Let us see how we can do

this.
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So, total memory of 4 GB we need to make. Let us see how we are doing here. So, we

require 4 such chips. These are the 4 chips and then the 30-bit address A0 to A29 is

connected to all the memory modules. 

We need two more  extra  bits  that  is  A30 and A31.  So,  a  2  x 4 decoder  is  required

depending on these two values any one of the four chips will get selected. So, if you

want to select chip 0, then it has to be 0 0, if you want to select chip 1, it has to be 0 1,

and so on. So, this is how it is organized.  And at a time when we select a particular

memory module, then a group of 8 bits will be transferred through this data bus to the

processor.
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So, as I said higher order address line A30 and A31 selects one of the memory modules.

So, what happens when M0 get selected? So, when M0 get selected the higher order

address line will be 0 0, when this higher order address line is 0 0 then only memory

module 0 is selected. So, what will be the range of address? So, the first address this will

be 0 0 it is a 32 bit address these all are 30 bits and these two are 0 0. So, total 32 we can

group it into hexadecimal digits.

So, what will be the range of address? So, as we know that this will be 0 0, first two bits

will be 0 for all and the address range will actually start from here. So, till this, this will

be 0 0 0 0 0 0 and the last address will be this last bit will be this will be 0 0 because this

is the 0 th module and this will be 1 1 1 1.

So, what will be the range? The range will be 000000000 to 3FFFFFFF. This will be the

range for module 0. Similarly for module 1 this will be 0 1, if this is 0 1 all will be 0 1s

and all will be 1. So, if all is 0 then this will be 0 1 0 0 that is 4 first this set of 4 bits will

be 4 so it  will  be 40000000 to 7FFFFFFF. Similarly when M2 is selected it  will  be

80000000 to BFFFFFFF. And similarly when M3 is selected it will be like this. So, the

range of address will be like this.
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We can observe one thing that the consecutive block of bytes is mapped to the same

memory modules. For MIPS we have to access 32 bits, that is 4 bytes, of data in parallel.

So to do that we require 4 sequential memory accesses, because it is 8 bit, so one-by-

one-by-one we have to access it.

Now we shall look into an alternative memory organization if there is a way that we can

do something such that all the modules can be selected at once and then the data can be

transferred. This is called memory interleaving.
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We make a very small change here. So, we organize these 32 bits of data that can be

fetched in a single memory access, we exploit this concept of memory interleaving. The

main change that we do here is that high order 30 address lines that is A2 to A31 are

connected to the memory modules. And the lower order to address lines that is A0 and

A1 are used to select one of the modules.

Now earlier the higher order bits were used to select the module. Now we are using the

lower order bits  to use the module.  So, what will  happen how the addresses will  be

mapped?
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So, in the module 0 it will be 0, 4, 8, 12, 16, 20, and 24. Module 1 it will be 1, 5, 9; so in

a block of four words consecutive addresses are now mapped into separate modules.

Now in module 0 earlier we were having 0, 1, 2, 3, 4 like this.

Here, we are having the consecutive words in consecutive modules. So, what advantage

can we get if we have consecutive words in consecutive modules? If there is a way to

select all the modules, and can transfer the data from all these modules simultaneously,

then we can get 32-bit data at a time. First address of the memory is in module 0, the

next address in next module, next address in next module, next address in next module.

So, this is the way to represent; we call it memory addresses are interleaved across the

memory modules.



So, what we can gain from this mapping? As I said if  the consecutive addresses are

mapped in consecutive modules then possibly we can access the four consecutive words

in the same cycle.  If all  four modules are enabled simultaneously, let us say all four

modules are enabled simultaneously. So, from this address you can access the word from

next address, from next address, from next address. So, all four words which are there in

these four different modules can be accessed together.
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So, now we can see the motivation for this word alignment in MIPS data word. If the

words are not aligned what can happen. See the 32 bit  words starts from a memory

address that is divisible by 4. So, corresponding byte addresses are (0, 1, 2, 3); (4, 5, 6,

7); all these. So, these are in different modules, and it is possible to transfer all the four

bytes in a single memory access. What happens if the words are not aligned? Let us say

some words are starting from 1 some words are starting from 2 then what will happen?

My words are in consecutive modules. So, (1, 2, 3, 4) I require; this will not help us, this

is not aligned because it is not starting from 0.

So, in that case I need 0 as well, so to do that in one memory access I can get this, and in

another memory access I also need to get this 0-th location. Hence, the word cannot be

transferred in single memory access. It will be accessed in a single memory cycle only

when it is aligned; if it is not aligned it will require more number of memory access, in

this case two memory cycles will be required.
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Now, let us see what we are saying. So, the higher order bits are connected to the address

modules and the lower order bit is connected to the decoder; it is still connected to the

decoder and through this decoder at a time one of the memory modules gets selected.

Once one of the memory modules get selected then 8 bit of data is transferred. So, a

bottleneck still exists that we have a data bus of 8 bit. Still one module is selected at a

time and 8 bits data transfer per cycle is taking place.
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Now, let us say all these all modules are selected; all modules are selected at all times.

And one more change we have done we have made this data bus as 32 bit. And the high

order address is connected to all the memory modules. In all the memory modules the

high order address is connected.

So, in this case what will happen? As all the modules are selected whenever we give that

address first address then the data from all the four modules get selected and it will be

transferred to this 32-bit data bus. So, it from this module 8 bit will come from this, this,

this,  and then  it  will  be  transferred  to  this  32-bit  data  bus  to  the  processor. So,  the

advantage we get here is that all the modules are selected. And we apply a same address

to  get  different  data  from different  modules.  It  would  not  have  been possible  if  the

addresses are mapped in a single module. It is only possible because the addresses are

interleaved across the modules.

So, it enables all four modules together, so 32 bit parallel data transfer is possible.
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We already discussed about this regarding memory latency and bandwidth, so we will

take a small example to explain this. What is latency? Latency is the delay from the issue

of the memory read request to the first byte of data becoming available. So, it is the time

required to access the first data and then consecutive data can be accessed in a much

quicker time.



What is memory bandwidth? The memory bandwidth is the maximum number of bytes

that can be transferred between the processor and the memory system per unit time. 
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Let us consider this example. So, here a memory system takes 20 nanosecond to service

the access of a single 32-bit  word.  That  means,  20 nanosecond is  the latency;  in  20

nanosecond  it  is  transferring  a  single  32-bit  word.  What  will  be  the  bandwidth?

Bandwidth will be 32 /  (20 x 10-9). 
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So, you can just see this that latency is 20 nanosecond. This is the bandwidth so you can

just do a simple calculation which is coming down to 1600 megabits per second. Finally,

if you divide it by 8 you will get 200 megabytes per second. So, the bandwidth is 200

megabytes per second. 

Let us take another example.

Here the memory system is little bit modified to accept a new, still this 20 nanosecond

request, for a 32 bit word every 5 nanosecond by overlapping the request. Now the next

word, next word, next word is overlapped; that means every 5 nanosecond the next word

is available. So, how we can change this? So, the latency will be still 20 nanosecond per

word so there is no change there, but now the bandwidth can be increased, because after

every 5 nanosecond the next, next, next word is available. So, it is 32 divided by 5 into

10 to the power minus 9 which is coming down to 800 megabytes per second.

So, we have seen some of the examples, and what is latency and bandwidth, and how are

they important in the context of memory system design. So now, we came to the end of

lecture 27. In the next lecture we will  be looking into how we can further make the

memory faster. So, we will be moving on with memory hierarchy, cache memory, virtual

memory, etc.

Thank you.


