
Computer Architecture and Organization
Prof. Kamalika Datta

Department of Computer Science and Engineering
National Institute of Technology, Meghalaya

Lecture – 22
MIPS Implementation (Part 2)

Welcome to the last lecture of week 4. So, we have already discussed about MIPS

implementation. We will continue with that here.

(Refer Slide Time: 00:39)

First, the data path design of MIPS. Individually, we have seen that how we are actually

executing a particular instruction, what are the micro-operations that are required to be

executed. How the data path is actually designed we will see here.

We now show the data path for the five steps as mentioned for executing MIPS32

instructions, and we are assuming here that there will be no pipelining. This is also

known as single-cycle implementation; only after one instruction is finished, can the next

instruction start. In a single cycle we execute one instruction fully. And then we move to

the next instruction, and again we move to the next instruction after executing the

previous one. Later we shall extend the data path for pipeline implementation; we shall

discuss various pipelining issues related to the techniques for faster execution of

instruction in later phase of this particular course.

(Refer Slide Time: 02:04)

Now, let us see how the data path will be for the various stages. First take into

consideration the IF stage. So, in the IF stage, from Mem[PC] we load the content of the

memory location pointed by the PC. We will fetch the data and put it in IR; at the same

time PC will be incremented by 4, and it will be stored in NPC. So, we require a 32-bit

PC, a 32-bit NPC, a 32-bit instruction register, and of course, a 32-bit adder.

So, now we see that this PC will hit the instruction memory. PC contains the address of

the next instruction to be executed. So, it will hit the instruction memory and the data

will be available in IR, and this PC is added with a constant 4 and this is stored in NPC.

So, these two operations can be performed using the following data path that is there.

(Refer Slide Time: 03:49)

Next move on with the ID stage. In the ID stage, what we said we decode that

instruction, and after decoding that instruction we also fetch the particular fields that are

the registers --- source register, the destination register, the immediate field, etc. and we

make it available for that particular instruction execution. So, from the register bank this

rs, rt and rd from IR it is coming, and from this register bank it is going to A and B; and

after sign extension it is going to IMM. So, one of the source register values is coming

depending on rs, another source register value is coming from rt, the immediate value

which is sign extended to make it 32-bit if stored in IMM; Imm1 calculation is not

shown; it is pretty similar.

(Refer Slide Time: 05:21)

Now, let us see what happens in the EX stage. So, we are looking here step-by-step fetch,

decode, then execute, and for execute how the data path will be. For the execution we

know that there can be various kinds of operations that can be present; one can be

memory reference, another can be register-register ALU instruction, register-immediate

ALU instruction, and branch instruction.

So, for all these kinds of instruction we see that this particular data path will be

sufficient. We need to add with the immediate value. So, there is a MUX which is

attached to this ALU is having two inputs, and in this ALU one is coming from NPC

another is coming from A. So, depending on the select line this can be taken care which

input will be going. So, for memory reference A will come in, accordingly the select line

will get activated, and immediate value will be coming. So, here we can see that A and B

are coming from these two MUX, and along with B that immediate value can also come

in here, which is available after ALU operation. The ALU output is available at ALUOut.

So, we are doing this operation and putting it in ALUOut. So, 32-bit ALUOut, 1-bit cond

is required for condition checking, and 32-bit 2x1 MUX is also required.

Now, let us see for register-register ALU operation. So, if it is register-register then input

A should go and B input should go; in that case the select line will be selected and A

input will go to one input of ALU, and B input will go to another input of ALU, and the

operation will get performed. Similarly for register-immediate ALU operation, A will

come in from the first MUX to one of the inputs of ALU, and Imm will come from

another MUX and will go in into the next input of the ALU. And for branch the NPC

value must be added with the immediate value by shifting it to left 2 positions.

So, in that case from this MUX NPC value will come in, and from this MUX this Imm

value will go in, and the operation will be performed similarly for the cond. The cond

will be available based on this A op 0. So, A will be operated with 0. So, input is coming,

will be checked with 0, and the condition will be outputted here. So, all these operations

are actually performed in the execute stage using the following data path.

(Refer Slide Time: 09:30)

Let us move on Mem stage. In the Mem stage what basically happens which all

instruction will require --- memory load operation, store operation, branch operation, and

for all other operation NPC is stored in PC in this particular Mem stage. So, let us see the

data path for Mem stage. So, what happens this is the data memory from where we will

fetch the data, now we know that if we need to read it from a particular location we need

to put that address in MDR basically and then we hit the data memory.

So, in this case ALUOut will be put in to the data memory, and then the value will be

read and can be stored in LMD. So, for the load operation this happens where memory

location pointed by ALUOut is read, and it is stored in LMD. And in all cases we can see

that updated value of PC in NPC is stored in PC, so, similarly all other operation can be

taken care using this particular data path.

(Refer Slide Time: 12:04)

Let us move on with the WB stage. In the WB stage what happens, we write the value

into the register. So, finally, whatever value; either that value is coming from the

ALUOutput or the value is coming from memory, it should be written back into the

destination register. So, in some cases rd is the destination register, and in some cases rt

is the destination register. So, accordingly for register-register ALU operation, this

ALUOutput is stored in rd; for register-immediate ALU operation ALUOut stored in rt.

And for load instruction the LMD value will be stored in rt. So, this is how it can be done

it can be selected from the MUX either from LMD or from ALUOut.

Till now we have seen that the various data path that is required in the various stages in

IF, ID, EX, MEM and WB. So, in 5 stages we can see that; what is the data path that is

required in MIPS.

(Refer Slide Time: 13:42)

Now, let us put it together all. So, whatever we have discussed starting from IF to ID

then to EX and then to MEM and finally, to WB. This overall picture gives you an idea

how it is actually happening. This is the data path that is there for MIPS. So, here

initially the PC hits the instruction memory; the instruction is read and stored in IR. After

it is stored in IR the instruction needs to be decoded; at the same time when it gets

decoded some of the other register gets populated, that is, A, B, Imm, etc. And next we

execute it. For execution it is required that we get the data from A and B, or from an

immediate value; accordingly MUX are in place to select any one of the values out of the

two which is fed to the ALU, and from ALU we are getting ALUOut.

Now, once the data is available in ALUOut it is some time required to get the data from

memory. So, in that case it is again hit to the data memory, and the data is read and it is

stored in a register known as LMD. Finally, from LMD it is written to the register bank

in the WB step. So, all the steps that we have seen in bits and pieces in previous slides,

here we have put them all together. So, this is the overall picture.

(Refer Slide Time: 16:20)

Now, what is the simplicity of the control unit design here. You see that there is a regular

structure here; that means, all the instruction we know are of fixed length; we know that

this particular field is for this particular register, that is source or destination, this is an

immediate field, and so on and so forth. So, we actually understand that for MIPS the

instructions are very regular. So, all the instruction will be pretty much same depending

on what kind of instruction it is. So, because of this due to the regularity in instruction

encoding and simplicity of instruction set, the design of control unit becomes very easy.

So, control signals in the data path are as shown. Using these control signals in the data

path, we can generate all the control signals for any instruction.

(Refer Slide Time: 18:40)

Now, let us see this control signals for some of the instructions. You recall our discussion

for single bus architecture; we have seen how corresponding to the data path the control

signals are generated, and how we can execute it. Similarly here also we have shown that

these are the control signals available for MIPS. Now we will show how a particular

instructions gets executed using those control signals. Take ADD R2,R5,R10. So, here

we fetch the instruction: ReadIM, LoadIR, and then LoadNPC. So, in the first fetch step,

these are the control signals that are activated.

Now, after doing, so, in the next step we are loading ReadRegPort1, ReadRegPort2 after

reading from here load it to A and B, that is the decode phase. At this phase we are also

decoding, and we are also fetching the value from the instruction and storing it in A and

B. Now we are doing the exact ALU function. So, here ALUfunc will be add; this is add

operation, MuxALU1 will be 0, we need to select A so MuxALU2 will also be 0, we

need to select B and then after this operation LoadALUout. So, ALUOut will be loaded

with the operation performed.

Now, here are the operations performed in the Mem phase. In the Mem phase we load

PC. So, PC is loaded with the new value of the NPC and finally, in the WB phase the

output of ALU that was present will be written to R2; in this MuxWB will be set to 1,

and WriteReg will write it into the destination register. So, to execute this particular

instruction these are the micro operation or control signals generated.

(Refer Slide Time: 22:09)

Let us see another instruction that is LW R2,100(R5); that means 100 and R5 will be

added then the value will be read from memory and it will be loaded in R2.

So, at different phases different things will happen. So, let us say this is the fetch phase.

The fetch phase is standard. In the decode phase register value of rs will be loaded in A,

and of course, other values will also get loaded, but here we are showing which are

required for us which are needed for us. So, Imm will actually store the IR value 0 to 15

bit, and it is sign extended to make it 32-bit. We have to add this Imm with A, and we

have to store it in ALUOut. So, ALUOut will have A + Imm; we add these two values

and finally, this NPC will be loaded in PC. Now the content of ALUOut will be brought

in from data memory, and it will be put in LMD; after this is done finally, from LMD it

will be put into the destination register rd or rt.

So, let us see the corresponding control signals. So, first we ReadIm, LoadIR and

LoadNPC. Similarly here we will ReadRegPort1, we will LoadA and you will LoadImm.

Now you see MuxALU2 will be 1; earlier when it was A and B the MuxALU1 was 0 and

MUXALU2 was also 0, but now it will be the immediate value. So, in this case

MUXALU2 will be 1; the next value will get selected depending on the MUX select line

and then we load. So, this will be added and will be loaded in ALUOut.

Next in the Mem phase of course, we will LoadPC that will be done for all the

instructions, and now this ALUOut contains the address from where we have to read the

data. So, as this contains the address where to read the data we will read it from the data

memory and we will load it to LMD. So, data is now read from the data memory and

loaded in LMD in this particular phase.

And finally, we write back we write back the data into Reg[rt]. So, MuxWB will be 0

and we perform WriteReg. When we perform WriteReg, the LMD value is loaded in

Reg[rt]. So, this is how we can perform the operation.

So, we have come to the end of lecture 22 and of course, week 4. So, in this week we

have seen how we can design a control unit, the various methods that are present in the

design of control unit. And by this time we have also shown that for MIPS what is the

control unit, how we can design the control unit and so on.

Thank you.

