
Computer Architecture and Organization
Prof. Kamalika Datta

Department of Computer Science and Engineering
National Institute of Technology, Meghalaya

Lecture – 21
MIPS Implementation (Part 1)

Welcome to the next lecture. Till now what we have seen that how we can design a

control unit. We have also seen both hardware and microprogrammed control unit design

methods. So, in this lecture we will be now looking into MIPS implementation. We have

seen the general way of designing a control unit. We will be in this lecture specifically

seeing how in MIPS the data path is there, how the instructions are actually getting

executed with respect to MIPS instruction set.

(Refer Slide Time: 01:14)

We have already discussed this in week 2 lectures, MIPS32 instruction encoding. So, we

have R type instruction, we have I type instruction and we have J type instruction. In R

type instruction, we have an opcode field, we have 3 register fields (2 source register,

one destination register), we have shift amount value, and this is opcode extension

function. In the I type that is immediate type instructions, we have opcode, 2 registers,

and we have an 16 bit immediate value.

Similarly, in J type instructions, we have an opcode, and we have a immediate value of

26 bit. So, rs if present always occupies bits 21-25. If rt is present it always occupies bits

16-20. Similarly, rd occupies from bits 11-15.

This immediate field contains bits 0-15; it is 16 bit. This immediate field occupies 0-25;

it can be extended by 2 more bits, later we can see. So, the register operands as well as

16 bit and 26 bit immediate operand are retrieved and processed in case they are required

later. So, as you see that this is the opcode. These are source register and destination

register, these are the immediate data. So, what we can do we can retrieve these data in

advance.

(Refer Slide Time: 03:48)

So, in a simple implementation of MIPS, we consider the integer instructions and data

path of MIPS. So, what the basic idea goes here is that different instructions require

different number of register operands. And relative positions of the register encoding and

immediate data are the same across instructions. So, by this what we mean that we use

any instruction, does not matter it can be a J type it can be I type. But this is fixed that

from this particular bit to this particular bit, it will have this particular data; from this

particular bit to this particular bit, it will be this particular register; from this to this it

will be another register. So, that is fixed. So, this information is known to us.

(Refer Slide Time: 04:43)

Let us take a naive approach. In a naive approach what happens after fetching and

decoding an instruction, we identify the exact register or immediate operand to use and

handle them accordingly. What we are saying that we will fetch an instruction, we will

decode that instruction, and then we will come to know that this particular instruction

performs this particular task. So, we can extract the register, if it is for an immediate

operand we can extract the immediate operand. So, we are not doing something well in

advance rather after decoding it we are starting to do all these things.

The number of register fetches and immediate operand processing will vary from

instruction to instruction; obviously. We do not utilize the possible overlapping of

operations to make the instruction execution faster. If we are just fetching one by one by

one, then we really cannot take the advantage of this overlapped execution of instruction,

that is pipeline. So, we will not be able to take advantage of that. Why because, we are

fetching these instruction one by one, and then we are decoding then we are getting all

the other immediate value or register value, etc.

So, before instruction decoding is complete, we fetch the register operands and

immediate data in case they are required later. So, this is a better way. Before the

decoding is performed, we want to fetch --- we already know that this particular bit will

be a register, this particular bit will be an immediate data, this will be destination register,

this will be source register. So, why not let us take those, fetch and keep in some proper

place. If it is not required later we will not use it, but at least if it is required, then it will

be very easy for us to get the data; we do not have to fetch it again.

(Refer Slide Time: 07:08)

So, this is an assumption that an instruction can have up to 2 source operands. Basically

one is ADD R1,R5,R10 and for LW R5,(100)R6. So, there are 32, 32-bit registers, R0 to

R31. We design the register bank in such a way that 2 registers can be read

simultaneously. That is, there are 2 read ports we already have seen in multibus

architecture, that this might be possible that a particular register has two read ports and

one write port. We shall see later that the performance can be improved by adding a write

port; that is, 2 read and 1 write are possible per cycle.

(Refer Slide Time: 08:10)

So, this is the story. All together we have a register bank where we can read from 2

registers and we can write into 1 register. So, read port 1, read port 2, and we have one

write port. So, source register 1 will be 5 bits, and the data will be 32-bit, source register

2 will be 5-bits and the register data can be 32-bit, and this is the destination register.

(Refer Slide Time: 08:42)

Let us now come to a speculative approach. Let us try to speculate something here; we

try to eliminate the time required to fetch the register operands and process the

immediate data. So, as we said that when an instruction is decoded at the same time we

fetch the register operands and also process the immediate data; that means, we have

already seen that in MIPS architecture the immediate data is sign extended to make it 32

bit.

So, all these things can be done once it is decoded. We really do not know at this point of

time whether it is it will required or not. But still let us do it, because their locations in

instruction word are fixed, and because of this fixed location we are able to do this. If the

operands are required, they are already available; no extra time will be required because

we have already done this fetching; and if the operands are not required, they are simply

ignored.

(Refer Slide Time: 10:30)

Now, MIPS32 instruction cycle is divided into certain steps. So, what are the steps?

Instruction fetch, instruction decode or we can say register fetch, execute where effective

address calculation is also done, this is memory access and branch completion, and write

back to a register. We now show the generic micro instructions that are carried out in the

various steps.

(Refer Slide Time: 11:14)

In the instruction fetch what happens, we know we fetch an instruction. As we have

already seen for single bus architecture. Here also it is pretty same, but it is specific to

MIPS. Here the instruction pointed to by PC is fetched from memory, and also the next

value of PC is computed. So, every MIPS instruction is 32 bits, that is 4 bytes. For a

branch instruction, new value of the PC may be the target address. So, PC is not updated

in this stage; the new value is stored in a register called NPC.

So, this is little bit different than we have done earlier. What we are doing we are

updating the PC value, and if there is a branch later at that point, we are doing Yin at

certain stage, and that Yin can be added with that particular offset to go to the branch

location. There we were doing like this. But in MIPS, we are updating the PC value, but

not updating it in the PC register. They are adding the PC value, and the new value is

stored in another register. So, for this purpose they have kept another register called

NPC, where the updated PC value is stored and not in the PC. So, we do Mem[PC]. So,

the content of memory location pointed by PC is brought into IR, and PC is incremented

by 4 and it is stored in NPC.

(Refer Slide Time: 13:16)

Now, let us see what happens in instruction decode. The instruction already fetched in IR

is now decoded. As we said that the opcode is a 6-bit from 0 to 5. These are also stored;

first the source operand rs, second the source operand rt, 16-bit immediate data and 26-

bit immediate data are also fetched. So, all these are fetched we do not know whether we

will be requiring it or not, but we have fetched it decoding is done in parallel with

reading the register operand rs and rt. And this is done within the processor, because our

instruction is in IR, and from IR we are taking it one by one. Possible, because these

fields are in fixed location in the instruction format. In a similar way the immediate data

can be sign extended. So, the immediate data can be sign extended to make it 32-bit.

(Refer Slide Time: 14:29)

So, this is what we are doing. In A we are bringing Reg[rs], in B we are bringing Reg[rt].

Immediate data which is 0 to 15 we are sign extending with the first bit, that is IR15 16

times. And the next immediate field is padded with 2 zeros. So, this 26 bits are kept. So,

Imm and Imm1 are temperature registers that are loaded in the instruction decoding

phase with these particular values.

(Refer Slide Time: 15:29)

 Let us see what happens in execution phase. In the execution phase, the effective

address computation is performed. So, in this step the ALU is used to perform some

calculation. The exact operation depends on the instruction that is already decoded. The

ALU operates on operands that have been already made ready in the previous cycles. We

have already fetched and kept it in A and B registers in the decoding phase, and it is an

ALU operation; then finally, in the execute phase the operation specified can be

performed. So, we show the micro operations corresponding to the type of instruction.

(Refer Slide Time: 16:25)

Now, in execute phase what can happen? If it is a LW then this is an immediate value

added with R8. So, R8 goes in A, added with the immediate value that is 100 ,which goes

in the output of ALU. For register to register, both A and B are present for this

instruction; R5 and R12 both are present, it will be added or subtracted depending on the

function and it will be stored in ALUOut.

Similarly, register immediate. In this case, R5 is subtracted with an immediate value. So,

R5 is available in A, and this immediate value is available in Imm, and this function that

is subtraction can be performed and the output is available in ALUOut.

Now, for branch, what happens? For the branch the immediate value that we have got it

needs to be left shifted twice, and then added with NPC because NPC contains the

incremented value that will come to ALUOut. And if we have a branch instruction like

BEQZ; that means, if R2 equal to 0 then only branch. We have to check for this

condition, and this condition will be an operation with 0. So, if this particular operation if

this condition is satisfied then you will branch. So, it will do some operation and it will

set the condition and accordingly branch will take place.

(Refer Slide Time: 18:33)

Now, what happens in MEM --- memory access or branch completion? The only

instructions that make use of this step are load and store, and of course branches. The

load-store instruction accesses the memory. So, the memory operation will actually

happen here. The branch instruction updates PC depending upon the outcome of the

branch condition. So, this also happens here. So, these are the two things that happen in

MEM phase.

(Refer Slide Time: 19:06)

So, now NPC will be loaded in PC, and for the load instruction output of ALU location

pointed by that will come to LMD. Similarly, NPC will come to PC, and then B will be

put into that particular location whose address is in ALUOut; and for the branch what

happens if the condition is satisfied, then that ALUOut will go to PC, and else NPC,

which we have already calculated will be loaded to PC. And for all other instruction, we

have already calculated the PC value in NPC, which will be put in PC.

(Refer Slide Time: 20:25)

Let us see in Write Back what happens; register write back occurs in this step. The result

is written back into the register file. Result may come from memory system via load as

well. The position of the destination register in the instruction word depends on the

instruction already known in the decoding phase. So, this is basically the destination

register in this particular case, and this is the destination register.

So, the position of the destination register we already know from the decoding phase,

and then the result may be put in there in this particular step.

(Refer Slide Time: 21:16)

So, whatever value was there in ALU can be put in for register transfer. Here also

ALUOut will be put in Reg[rt]; and in load instruction in LMD we have stored that

value, now it will go to the required register.

Let us see some example instructions. Now we have seen step by step how in MIPS the

instructions are executed.

(Refer Slide Time: 22:09)

Now, let us see a complete execution of an instruction ADD R2,R5,R10. So, in the

instruction fetch phase IR will have Mem[PC]. So, this entire instruction is in IR, and

NPC will have PC plus 4. Similarly A will have Reg[rs], B will have Reg[rt]. And in the

execute phase both the source operands are added, and it is available in ALUOut. And

then in the MEM phase the PC is loaded with NPC value, and finally, the value of

ALUOut will be put it into the destination register, that is R2 here.

So, in five steps we are executing it, but for all instruction all these steps will be

required, let us see how we can add an immediate value. In this case, this is an

immediate value. So, this immediate value which is 16-bits concatenated with a MSB

value, and we get the total 32-bit immediate value, and A is R5 here. Finally, ALUOut

we will be adding this value with immediate value, and NPC is loaded in PC in this

particular step, and finally, we write back the output into R2 that is the destination

register here.

(Refer Slide Time: 24:01)

Now for load instruction For load instruction, we can see that similarly in instruction

fetch these 2 steps will be performed, A will have the source operand, that is R6 here,

immediate value will be stored in Imm, we will add R6 with 200 and it will be stored in

ALUOut. And then NPC will be put in PC, and memory operation is performed here. So,

the output of ALUOut from this particular memory location, we need to read the value,

that is what we are doing which is loaded in LMD. Now LMD contains the value that

should be put in R2. So, LMD will be stored back here.

Similarly, for storing what we have to do, we fetch and decode. After decoding same way

we are adding this and this immediate value, and this register value NPC is loaded to PC.

And now instead of getting it from the memory, what we are doing? The value of B that

is in R3 is stored in Mem[ALUOut], because ALUOut is the location. We are storing B

into Mem[ALUOut], and in Write Back there will have nothing to store.

(Refer Slide Time: 26:10)

Let us see the next instruction branch if equal to 0. So, what we are doing here. So, in the

instruction fetch and in the decode in the same way we are fetching it. In ALUOut what

we are doing? We are adding NPC with the immediate value, which is left shifted twice

and finally, we are putting that condition based on R3. R3 is loaded in A. If we are

checking this condition if R3 equals to 0 or not, according to this cond will be set. If it is

0, then only branch will takes place. So, otherwise NPC will be PC. So, if the condition

is met then ALUOut will be put in PC, else this NPC will be in PC, and there will be

nothing in the Write Back phase. So, this is how the branch instruction is executed in

MIPS.

So, we have come to end of lecture 21. In this particular lecture, we have seen that how

the instructions are executed in MIPS architecture. How the data part is there in MIPS

and how the instructions are executed.

Thank you.

