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Welcome to lecture 20; the design of control unit  part  4. Till  now we have seen the

various internal bus architecture and we have also seen that how various instructions are

executed. Now we will look into the approaches that are required for generation of these

control  signals;  what  kind  of  approaches  are  there.  Broadly  there  are  2  types  of

approaches.
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One is hardware control unit design, and microprogrammed control unit design. So, what

we are trying to say, we know that for this instruction these are the control signals that

are required to be generated.
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But now these control signals must be generated in a proper sequence what do you mean

by that. So, let us take an example.

So, we say that in T1; what is performed PCout, MARin, READ, Select4, ADD, Zin. So,

at T1 for all the instructions these signals must be generated. Similarly in step 2 some

more signals, step 3 some more signals and so on. So, the processor must generate the

control  signals  for  the  data  path in  a  proper  sequence.  We will  be looking into  two

approaches,  one  is  hardware  control  unit  design,  and  another  is  microprogrammed

control unit design.
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Coming to hardware control unit design, let us see what we have here. We have a clock

that is hitting the control step counter. The control step counter is connected to a step

decoder. Basically the step counter generates the steps that are required by an instruction

to generate the control signals. So, at these steps T1, T2, T3 various control signals will

get  generated  depending on which instruction  we are using,  what  is  the step of that

instruction, whether some external inputs are required for it or not, if some conditional

codes needs to be checked or not. So, depending on all these, we see that in this encoder

the content of this step decoder the content of instruction decoder and the external inputs

and the condition codes all are getting input, and the encoder is encoding based on that

the control signals are generated.

So, we will be looking into each and every aspect of this instruction decoder. We already

know conditional codes for every ALU operation; certain flags gets sets and depending

on the condition codes can be considered external inputs what can be the external input

an MFC memory function complete that is an external input that comes from a different

module that is memory and there are 2 more signals one is Run another is End we will be

seeing  why  we  are  requiring  this,  but  you  see  this  entire  structure.  So,  this  entire

structure is basically doing what it is generating control signals. How it is generating

control signals depending on which instruction and which step it is, and if there is some

external  inputs for that  depending on all  these this  encoder will  generate  the control

signals.



(Refer Slide Time: 05:51)

So, and this we already know that this is a sequence of control signals for ADD R1,

LOCA. So, these are the set of microinstruction that are executed.
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In hardwired control unit design there is an assumption that each step in the sequence is

completed  in  one  clock  cycle,  but  remember  one  thing  that  when  we  are  reading

something from the memory it may not be completed in one clock cycle.  We cannot

ensure that if we are reading from memory it will be completed in 1 clock cycle, but this

is an assumption that we have made. A counter is used to keep track of the time step.



A step counter  is  there  which  keeps  track  of  the  time step.  Let  us  see the previous

instruction,  here  7  steps  are  required;  some  instruction  might  take  8  steps,  some

instruction might takes 4 steps or 5 steps. So, this has to be taken care of. So, counter is

used to keep track of the time step. The control signals are determined by the following

information: what are the following information the content of the control step, counter

content of the instruction register, content of conditional code flags and external inputs

such as MFC. We have already seen that the encoder is taking input of the step decoder,

taking input of the instruction register, and it  is also taking the conditional code and

external inputs depending on all it is generating the control signals. So, that is what it is

saying that the control signals are determined by the following information content of

control step counter, content of instruction register, and content of conditional code flags

and external input signals such as MFC.
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Now, let us see this; the encoder-decoder circuit is a combinational circuit that generates

the control signals depending on the inputs provided. So, whatever be the input from the

step  decoder,  instruction  register,  external  inputs,  and conditional  code,  the  encoder-

decoder circuitry will generate the control signals. Now see the step decoder generates

separate signal line for each step in the control sequence. So, at step 1, PCout, MARin,

READ, Select4,  ADD, Zin happens. At T2, Zout,  PCin, Yin is happening, and in T3

MDRout, IRin is happening. So, at various time steps different control signals are getting

executed.



So,  how many steps  we require  is  dependent  on the maximum steps  required by an

instruction. The step decoder is designed depending on the maximum steps required for

an instruction. So, let us say we have 20 instruction in our instruction set architecture,

and every instruction takes 4 steps, 6 steps, 7 steps, and maximum steps that is required

for an instruction is let us say 8. None of the instructions take more than 8 steps, then

what will be the size of your step decoder we need to generate a maximum of 8 steps.

So, a 3 x 8 decoder will do, but if the maximum step is 10 in that case step decoder size

will be 4 x 16. In case we require only maximum of 8 steps for any instruction in that

case a 3 x 8 decoder will do, but for other if it requires more then we will be requiring 4

x 16 decoder. So, if a maximum of 10 steps are required then a 4 x 16 step decoder is

used. Among the total set of instructions, the instruction decoder is used to select one of

them. That particular line will be 1 and the rest will be 0. So, depending on total number

of instruction let us say we have a total of 30 instructions.

So, if you have a total of 30 instructions how many bits will be required to encode? It we

will require 5 bits, because 5 x 32 decoder will be used. So, output at any point of time

depending on the input any one line will be 1 and the rest will be 0. So, it can encode 30

instructions; similarly if you have 100 instructions how many bits will be required to

encode that? We would require 7 bits and we require a 7 x 128 decoder. 
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Then a 7 x 128 instruction decoder is used at every clock cycle. The RUN signal is used

to increment the counter by one; when RUN is 0 the counter stops running this signal is

needed when WMFC is issued. Now see what we are trying to say. So, when the step

decoder value is at step T1 for instruction ADD, certain set of control signals will get

generated. After that step is performed then we need to move to the next step that is T2.

So, while moving to T2 what we need to do we need to move from T1 to T2.

So, the step counter will increment to T2 and now whatever is the assigned job for T2 it

will get executed, and similarly the step counter will go on incrementing. So, this RUN

signal is basically used to help the step counter to implement the steps of any instruction.

Similarly when RUN is 0, the counter stops counting and when this RUN is required to

be  0  this  is  required  for  WMFC;  see  when  we  are  doing  WMFC,  we  will  not  be

executing the next one until we get this confirmation that the data is available, then only

we can take that data because we have to operate on that data if that data is not present

we cannot open it. So, when that is. So, the RUN becomes 0 at that particular time and

when it starts to run again it will keep on running. So, this is for within an instruction

incrementing to the next; next step, next step and next step, the End signal starts a new

instruction --- it means we have completely executed one instruction and now we will be

moving to the next instruction. Once we have completely executed one instruction it will

be fully done and then we have to again reset the step decoder.

So, the step counter basically needs to be reset. So, this is done using the End signal. So,

the End signal starts a new instruction, it resets the control step counter to its starting

value.  So,  that  the next  instruction  can  be started  now. In the hardware  control  unit

design, the sequence of operation carried out by the control unit is determined by the

wiring of the logic elements, and hence it is named hardwired. Now we see that it is

basically a combinational circuit; we are giving inputs and we are getting some output. 

So, this basically depends on the wiring how you have put on everything in place, how

you  have  placed  the  encoder,  how  you  have  use  the  step  decoder  everything,  and

ultimately this is the wiring. Hence it is called hardwired control unit design, and this

approach of control unit design is fast, but limited to the complexity of instruction set

that is implemented. So, we cannot have very complex instructions implemented using

hardware, but simple instructions can be executed and it will be much fast and efficient,



but we cannot have very complex instruction implemented here.  With more complex

structures the complexity increases and that flexibility will go off.
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So, keeping the flexibility of this hardwire simple instructions are basically implemented

using hardwired control unit design. Let us now see these 3 instructions together. These

are the control signals required for ADD R1, R2; ADD R1,LOCA; and BRANCH Label.

So, at various time steps following control signals are getting generated.
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For these particular 3 instructions I will now generate the signal using hardwired control

unit hardwired design for PCin and END. Now see what is PCin. If you go back we have

to see where we have PCin; T1 we do not have PCin even for anyone, and in T2 we have

PCin for all the instructions, and then we see that we do not have any PCin for ADD, we

do not have any PCin for ADD R1,LOCA, but we have PCin in step 5 for BRANCH.

So, we can take this into consideration that PCin signal is activated at T2 for all the

instructions,  and PCin is activated for branch instruction in T5. So, we can write the

control signal PCin as T2 for all instructions plus at T5 when it is branch instruction only.

So, this logic expression can be written in the form of this logic gate where T5 and

BRANCH is connected with an AND gate which is connected to the input of an OR gate.

So, this expression can be implemented using this logic function. Similarly let us see

END. END happens at T6 for AddR, at T5 for Branch, and at T7 for AddM. So, we can

have a logic expression at T6 for AddR, at T5 for Branch, and at T7 for AddM. So, you

can see that we can implement this using the following logic expression and following

logic gate where these are connected with AND gates, and this is connected finally with

an OR gate. So, END signal can be generated using this particular circuit.

(Refer Slide Time: 20:30)

Now, coming to microprogrammed control unit design. In microprogrammed control unit

design we have a structure like this. So, what do we have here the instruction register

will give a starting address generator, and this starting address generator will hit a muPC.



So, we will have within computer a small place where we will be doing a similar kind of

function like a computer. So, here the IR will provide the starting address, which will hit

to the muPC. So, the muPC will hit to a memory, known as control store. So, at every

clock this muPC content will hit to some very high-speed memory called control store,

and  based  on  a  particular  instruction  provided  by  the  IR  and  the  starting  address

generator, this control store will provide a control word. And this control word is nothing

but it will give the information about the control signals which will be on and off, which

will be required to be activated at what time period.

So, let us see in at this point of time we need to understand about some of the definitions.

Control signals are generated by a program similar to machine language program like we

were doing what we were fetching an instruction from memory, then the PC was getting

incremented to the next address and again we were fetching, we were performing certain

operation similar to that we will be doing something here. So, the control signals are

generated by a program similar to machine language program the control store; control

store is a place which stores micro-routines for all the instructions in the instruction set

architecture.

So,  the  micro-routines  are  nothing but  all  the control  signals  that  are  required  for  a

particular instruction. So, the control store stores the micro-routine for all the instructions

of  an  instruction  set  architecture.  The  sequence  of  steps  corresponding  to  a  control

sequence of a machine instruction is specified by the micro-routine. So, if an instruction

requires  4 steps for execution,  all  the sequence of  steps  can be regarded as a micro

routine for that particular instruction, each sequence of steps in a control word whose

individual bits represent the various control signals.

So, each sequence of step is a control word; so, control word is a memory where we are

storing so many things. So, let us say this is a control word 1 0 0 1 0 1 0 1 1 1 0 0 0 0 1 0

something like this we have. So, what we can say here is that, let us say this is step 1,,

this is step 2 and this is step 3. So, this is basically my control store and what we are

storing here? We are storing control words --- these are control words, and each sequence

of steps in a control word whose individual bits represent the various control signals,

meaning this is a control word and its individual bits represent some control signals. So,

these are individual control signals that are on or off; that means, it is either active or not

active, and individual control words in a micro-routine are called micro instructions.



Now, let  us see this.  So,  as I  said IR depending on an instruction,  will  generate  the

starting address that will hit to the muPC, and then muPC will hit the control store and

from where the control words will get generated at every clock period. So, at every clock

period the muPC will get incremented by the required amount, and then from the control

store each of the control words will be generated, and the control word will give which

particular control signal is required to be 1 or which particular control signal is required

to be 0. So, as I have already discussed this control unit generates the control signals for

an  instruction  by  sequentially  reading the  control  words  of  the  corresponding micro

routine from control store.
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So, control store stores the control words, or we can say it stores a micro-routine. The

muPC is used to read the control word sequentially from the control store. So, muPC hits

the control store, and it is sequentially reads the control word one by one by one. So,

every time a new instruction is loaded into IR because we when we are executing one

instruction that particular starting address will be generated in muPC, and accordingly

this will happen same way if the next instruction needs to get executed. Then the next

instruction will get loaded in the muPC and then the starting address of that particular

instruction will  get loaded into the muPC and accordingly from the control store the

control  words  will  get  generated.  The  muPC  is  automatically  incremented  by  clock

causing successive micro instructions to be read from control store.
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So, this is how it is stored. Let us say there will be many more control signals for ADD

R1,R2. In step 1 what all control signals are 1, rest will be all 0. So, PCout, MARin,

READ, Select4, ADD, Zin these signals will be 1, and rest will be all 0. Similarly in step

2; we need to do Zout, PCin, Yin. So, see Zout will be 1, Yin is 1, and PCin is 1 at the

same time we have to wait for MFC because we have performed a read operation here in

the first step. Similarly in this step these 2 signals will be activated and rest will be 0. So,

this is MDRout, IRin. Similarly in step 4 for this instruction we need to perform R1out,

Yin and then what we are performing we are performing R2out, SelectY, ADD and Zin.

So, in Z now the result is which should be stored in R1.

So, I have to do as a Zout and R1in. So, this is a control store for ADD R1,R2. This is a

micro routine for this particular instruction, and these are the micro instruction and these

are stored in control store, and these are the control words that are read each time. So, the

muPC will be loaded with the starting address and then at every clock period this will get

incremented by 1; and it will be fetched from the control store similarly for branch we

have shown. So, similarly for branch first 3 will be same.
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And for this particular thing we have to do SelectY. So, if Select4 is 1, SelectY will be 0

and we perform ADD, Zin now and then we also perform IRout because the offset field

of IRout should be available, that will be added with. Y contains the previous PC value;

we do perform an addADD, we do Zin and finally, we perform Zout and PCin. PC will

be loaded with the new value that needs to be performed for the branch; that means, we

need to go to that particular location for that branch.

So, this is how the control store looks like for branch.
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Now, there are 2 alternative ways to code the control signals in the control memory. The

first way is the horizontal micro instruction encoding the one I have just shown. So, each

control signals is represented by a bit in the micro instruction and fewer controls store

words with more bits per word is required. So, fewer control store words are required,

but we require more bits per word meaning here you see that only a few signals will be 1,

rest all signals many are 0; only few are 1, but we still need to keep all why because we

have made it in such a fashion we are keeping for all the set of control signals. So, the

size of this control word will be dependent on the total number of control signals that are

present.

So, fewer control store words will be required with more bits per word, and each word

will contains more number of bits compared to vertical micro instruction encoding. Here

each  control  word  represent  a  single  microinstruction  in  encoded  form.  So,  if  k  bit

control word can support up to 2k microinstructions and more control store words with

fewer bits per word. 
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Let us say we have a total of 100 control signals. In case of horizontal control unit design

we require 100 bits for each control word, but in this case we require only 7 bits. So, at a

time only one control signals can get activated because we are encoding using just 7 bits,

earlier for horizontal it was 100 bits, but for this we only require 7 bits.



So k bit control word can support up to 2k micro operation. So, if you have 100, then

only 7 bits will suffice. 

So,  there  can  be  tradeoff  between  horizontal  and vertical  microinstruction  encoding,

sometimes refer to as diagonal microinstruction encoding. So, what we do here is that the

control  signals  are  grouped  into  some  sets  and such  control  signals  within  a  set  of

mutually exclusive. So, let us consider R1out; let us consider the single bus architecture.

So, can we perform R1out and R2out together or MDRout together on any one of the

operations at a time? So, we can group it into a mutually exclusive set. We require less

number of bits to encode; say if there are 32 instruction, we will just require 5 bits to

encode that, earlier we were using 32 bits for that.

So, the control signal are grouped into sets such that the control signals within a set are

mutually  exclusive.  So,  what  is  the  summary  out  of  this?  So,  horizontal  encoding

supports unlimited parallelism among microinstruction.  So, many micro operations or

those  control  signals  can  be  activated  at  a  time.  Vertical  encoding  supports  strictly

sequential execution of micro instructions; only fewer bits are required. We require less

storage, but it is sequentially performed, and it will not help for fast execution. Where the

demand is for fast execution, diagonal encoding does not sacrifice the required level of

parallelism, but uses less number of bits per control word as compared to horizontal

encoding.

So, we can see that diagonal encoding is the best where we analyze the control signals

depending on the architecture  that  we are using and based on that  we divide into  2

groups, and we know that within that group only one operation can be performed. So, in

such cases we can perform this.
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So, diagonal encoding is considered as the best among horizontal and vertical. So, I will

explain it in some detail.  So, for horizontal  micro instruction encoding, these are the

control signals. Suppose there are k control signals, then in horizontal encoding every

control word in the control memory consists of k bits, one bit for every control signals.

So, in this case several bits in the control word can be 1; parallel activation of the several

micro  operation  in  a single time step is  possible,  but  it  is  seen that  in  such kind of

scenario where we have a very large control word many bits are 0s and few bits are 1.
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The advantages are  that unlimited parallelism is possible in the activation of the micro

operations, but the disadvantage being the large size of the control memory.
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So, we also need to look into this because if you want to have a control memory that is

very large this cost will be much higher. So, in vertical micro instruction encoding where

we see that for m bits, a decoder is used for it. So, for k control signals, we require k that

is less than equals to 2m. So, m bits will be required for it depending on m bit control

word exactly one control signal will be activated which is 1 while all others will be 0, but

the number of bits required is much less. At most one control signal can be activated at a

time. So, we cannot do PCout, MARin and all those signals at one go; we can only do

first PCout then in the next step MARin, then READ, and so on.  
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So, the advantage here is it requires much smaller word size in control memory, low cost

of implementation. If you do not want high speed implementation you can go for such

kind  of  thing,  but  when  speed  is  a  vital  concern  this  method  cannot  be  taken  into

consideration.  So,  the  disadvantage  here  is  more  than  one  control  signals  cannot  be

activated at a time; requires sequential activation of the control signal and hence more

number of time steps will  be required here.  The option is  diagonal  micro instruction

encoding which is quite flexible.
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So, here also we require decoder. So, we group the set of k control signals into as groups

containing k1, k2, k3, etc. So, this group is having mutually exclusive instruction, this

group is having mutually exclusive instruction ,and we know that at a time only one

signal from this group will get activated.

So, we encode the control signals in group as shown where ki is less than equals to 2mi

this  is  depending on the  size.  So,  within  a  group at  most  one control  signal  can be

activated in a time step; parallelism across groups is allowed; also the number of bits

required is less. So, by studying the architecture well in advance we can design such kind

of microinstruction encoding to design a control unit.
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So, the advantage here is maximum parallelism as required by the micro program can be

supported  and  the  word  size  of  the  control  memory  is  less  than  the  for  horizontal

encoding and this is used in practice. This is basically what is used in practice because

parallelism can be exploited as well as the space is minimized, multiple encoders those

smaller in sizes are required. So, that will take up some space, some area let us take an

example suppose there are 100 control signals in a processor data path.
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So, for horizontal encoding control word size will be 100 bits. So, each will be 100 bits

for vertical encoding log2100 = 7 bits will be required and for diagonal encoding suppose

after analysis. So, it has been generated that the groups the following groups can be made

that is the following groups of mutually exclusive signals can be made that is 25, 15, 40,

5 and 15.

So, in each of the cases let us understand how many bits will be required and what will

be the size of the decoder that is required. So, we have m1 first group 25. So, 25 that is 25

is less than 32. So, 5 bits similarly this is 15 which is less than 2 4. So, it will be 4 this is

less than 26. So, it will be 6 this will be 23 less than that. So, it will be 3 and this will be

4. So, the control word size will be 5 + 4 + 6 + 3 + 4 which is 22. So, we if we just need

7 bits it will be much slower we cannot afford to have this, and if we take 100 bits the

space is too large. So, this is quite a feasible thing that we can take up, that is horizontal

that is diagonal encoding where we exploit both the features. 

So, we came to the end of lecture 20 where we have discussed about the various ways we

can generate control signals and by this we have also come to the end of control unit

design, but in next 2 lectures, we will be looking particularly how the control unit of

MIPS is designed.

Thank you.


