
Computer Architecture and Organization
Prof. Kamalika Datta

Department of Computer Science and Engineering
National Institute of Technology, Meghalaya

Lecture - 17
Designs Of Control Unit (Part 1)

Welcome to week 4. In this week we shall be looking into the design of control unit. So,

till now what we have seen? We have seen how an instruction gets executed; what are the

hardware blocks that are required for the execution of the instruction. And for executing

that instruction, basically some steps are required. That we are saying that, the content of

the PC will go to MAR. And then that particular content in MAR will hit the memory

through the address bus, and then we will get the data. And then something else will

happen. So, for any instruction certain steps are required to be executed. And for

executing those steps we require some hardware, like the registers, the ALU, and other

interconnecting blocks, other registers like IR, PC and all other.

So, in the design of control unit, we will be seeing what are the signals that needs to be

generated for executing an instruction. So, we will be seeing this in course of the lectures

that are there in week 4.

(Refer Slide Time: 01:54)

We already know that instructions are stored in main memory. The program counter

points to the next instruction. So, here we have an instruction, next the PC points to this

location, then the next one, and so on. So, each time an instruction is fetched, the PC gets

incremented to the next one, such that once the execution of this particular instruction is

completed, the next instruction can be fetched, and again the PC get incremented and so

on. Generally, MIPS instructions are all 4 bytes or 32 bits long. All instruction starts

from an address that is some multiple of 4. Last two bit is will be 0. And normally the PC

gets incremented by 4 to point to the next instruction. We know about this particular

thing from the very beginning.

(Refer Slide Time: 03:03)

Let us recall that in binary number system we have 2 digits 0 and 1. This is how it is

represented; both in binary and in decimal; addressing a byte in memory. We know that

memory is byte addressable.

(Refer Slide Time: 03:19)

So, each byte in a memory has a unique address, not each bit rather each byte. So,

typically the instructions are of 4 bytes. Hence the instruction memory is addressed in

terms of 4 bytes, that is word length is 32 bits. When an instruction is executed, PC is

incremented by 4. What if it is 64 bits or 8 bytes; it will be incremented by 8 and so on.

(Refer Slide Time: 04:05)

Now, let us see how an instruction gets executed. So, what happens this is memory. We

fetch the instruction and then we decode that particular instruction. After decoding,

whatever necessary thing needs to be done for that instruction, are performed. That is, we

execute that particular instruction. And then we move on to the next one, from the value

pointed by PC. And again we do the same thing. Again we fetch, we decode and we

execute.

(Refer Slide Time: 04:51)

So, this is the fetch-execute cycle. We fetch the next instruction from memory, decode

the instruction and execute the instruction. In the execution process what we do. It might

happen we have various kinds of instruction. Let us say, we can have an instruction

which is ADD R1,R2. We can also have an instruction called ADD R1,LOCA. In this

particular case we can say the operands are present in the processor register as well.

(Refer Slide Time: 05:14)

In this case, we need to bring a data from memory and then we can process this data. So,

in this case no further memory access will be required, but for this particular case

memory access will be required. So, in the execution cycle once we decode the

instruction, we know that this is the addressing mode, and so on and so forth. Now we

need to execute it. So, we get the data from memory, if needed data is not available in the

processor. We perform the required operation on data, and may also store the result back

in memory or in register as and when it is required.

So, in these two particular cases, we need not have to store back in memory. But in this

particular case, it might happen we need to store the result back in memory. So, we first

fetch this instruction, then we fetch this particular data, then we perform the operation,

and finally, we store back in this particular memory location. So, this is the fetch-execute

cycle.

(Refer Slide Time: 06:54)

The register we already know about this is the instruction register (IR) and this is

program counter (PC). Program counter holds the address of the memory location

containing the next instruction to be executed. Instruction register contains the current

instruction being executed. So, if this is my current instruction, then PC value is 2000.

Next PC will get incremented and it will have 2004, and so on. So, the PC will point to

the next instruction. Once we fetch this instruction, IR will contain this particular

instruction.

So, instruction register contains the current instruction being executed. Basic processing

cycle to be implemented is after PC points to the memory location where it is. So,

memory location of the PC will be transferred to IR. Now IR contains the current

instruction. Considering the word length of the machine is 32 bit, the PC is incremented

by 4 to point to the next location. Now PC will have PC + 4. Then we carry out the

operation specified in IR. So, whatever is specified in IR, we decode that and we then

need to perform the specific operation.

(Refer Slide Time: 08:24)

Let us take an example. ADD R1,R2 and MUL R3,R4. So, PC initially contains 1000.

MAR contains 1000. PC now contains 1004; MDR will contain this entire instruction. IR

will also contain this instruction. Finally, it will get decoded and executed. And then after

adding these two, the result is stood back in R1.

Now, you see these are some steps that are happening. We can see this in terms of some

values because we know that this particular address is having this value, now it is will go

to MAR. But, if we require our computer to do this, some signals needs to be generated

in proper sequence, to perform this particular operation depending on certain hardware

that is present.

(Refer Slide Time: 09:26)

So, what is the requirement for instruction execution? The necessary registers must be

present. We require to have the registers for that operation. Internal organization of the

registers must be known. This is very important and this is what we will be looking into

in this particular lecture, that internal organization of the registers.

What do you mean by internal organization? I say that, you will be having registers, you

will be having an ALU. You will be having other registers like PC, MAR, MDR. How

these are connected? We need to know internally how these are connected. MDR and

MAR are connected to the memory bus. But we need to know the internal structure of

the organization of the hardwares, such that we must know that how the registers are

connected, how the ALU is connected, to perform an operation in ALU what needs to be

brought in, how it should be brought in and everything

So, we need to know a complete picture of what is there inside. So, the internal

organization of the registers must be known. The data path must be known, that is, we

will be seeing what is data path. So, for instruction execution a number of micro

operations are carried out on the data path, may involve movement of data; that means,

when we are performing ADD R1,R2; how this data is actually moving? So, all these

operation how it is happening we need to know. The steps that are required for execution

are known as micro operations. So, micro operations should be carried out on the data

path provided.

(Refer Slide Time: 11:59)

So, let us see the kinds of data movement. Broadly it can be register to register, it can be

register to ALU, or ALU to register. We will be seeing all these kind of transfers in

course of time. So, the data movement are supported by the data path. And the data path

contains what the registers, the bus through which the data will move, the ALU, and of

course, some of the temporary registers. Some temporary registers are needed for this.

So, all these together are supported in the data path. Coming to the single bus

organization.

(Refer Slide Time: 12:38)

This is a very simple single bus organization that we are showing, which is internal to the

processor bus. And now see, these are the buses. This is the data bus and this is the

address bus, which are connected to the memory, through these two registers MAR and

MDR. In this internal processor bus we have PC. So, data from this bus can come in

here. And from PC also the data can be available in this bus. We have MAR and MDR.

So, this line is missing. So, there will be a connection, between internal processor bus as

well, and then this connection will be there. So, a two-way connection will be there. So,

data from this bus can also come into MDR, and from MDR the data can come into this

processor bus. Now you see this ALU. This ALU performs the required operation. And

there are two inputs of the ALU and one output. We see that one input of the ALU is

directly coming from the bus. So, whatever data is there in the bus, can be directly

connected to this input of the bus. If we say this is A input and this is B input, in this B

input we can see that it is available. And another data is coming through this Y register.

And from Y there is a MUX. Now see that MUX is selecting either the output of Y or it

is selecting this 4. Why this 4 is required? We will be seeing little later.

But let us understand for the moment, that when this select line is 1, either we select 4 if

the select line is 0, or we select Y depending on how you have implemented it. So, at a

time either 4 comes into ALU, or Y comes into ALU. After any particular function that is

performed by ALU, the data is transferred to Z register, and from this Z register the data

can be available in the internal processor bus; and from this internal processor bus now

the data can move to any of these registers. This is the IR, and this is the instruction

decoding and control unit. Instruction decoding and control unit is required to generate

the control signals. So, ultimately this unit will be generating the control signals

necessary to execute an instruction.

(Refer Slide Time: 16:35)

So, this is our single internal bus organization. So, let us see some of the features that I

already discussed. This is the single internal bus organization. All the registers and

various units are connected using a single internal bus. We have only one bus through

which it is connected. Registers are R0 to Rn-1. So, we have n general-purpose registers

used for various purposes. Y and Z are used for storing intermediate results. The

intermediate result of any operation is stored in these resisters, and they are never used

by an instruction.

(Refer Slide Time: 17:31)

This means, we will never see that we are doing something like ADD R1,Y. We will

never do that. We will only have ADD R1,R2 etc, which is the general-purpose register

or memory location. The MUX selects either a constant 4 or the output of register Y.

When PC is incremented a constant 4 has to be added. Now understand this. What

happens, when we see that this is my PC? PC is now 1000.

(Refer Slide Time: 18:25)

Now, the PC needs to get incremented. So, you have to do 1000 + 4. How will you do

this? We cannot simply do this; we need a circuit to do this. And for doing this, this input

must come into one of the inputs of ALU. So, if it comes to any one input of the ALU,

then we can add 1000 plus 4, and then the result can be stored in Z. And from there it can

be again put it in PC. So, it becomes 1004 again. So, this is how it can be done. So, when

PC is incremented a constant 4 has to be added.

(Refer Slide Time: 19:20)

The instruction decoder and control unit is responsible for performing the action

specified by the instruction loaded into IR. Now once the instruction is fetched from the

memory, it is it comes through MDR, and then it goes to IR using that single bus. Once it

is loaded in IR, it is the responsibility of the decoder unit to decode that particular

instruction. And then it generates whatever needs to be done; if it has to bring the data

from memory again it will do the required operation, if the data is already present in the

processor register, then it has to add it or multiply it with whatever action is specified it

needs to be done.

So, the instruction decoder in the control unit is responsible for performing the action

specified by the instruction loaded into IR. The decoder generates all the control signals

in proper sequence required to execute the instruction specified by IR. Now the decoder

decodes the instruction. After decoding the instruction it generates the control signals

that are required for that particular instruction in a proper sequence. Now what is data

path then? The registers, the ALU, and the interconnecting bus are collectively referred

to as the data path; that means, though this particular path, the data are moving for

performing the operation.

So, for performing the operation it has to come to ALU. Then from ALU it has to again

go to some register. So, how it is going? The registers are involved, the ALU is involved,

and the connecting bus through which the data is moving. So, data are moving through

all these places. Collectively this is referred to as data path.

(Refer Slide Time: 21:40)

So, now let us see what are the kinds of operations that are performed. Transfer of data

from one register to another. Let us say moving a data from R2 to R1 is required.

Perform arithmetic or logic operation on data loaded into register. Let us say the data is

loaded in R1 and R2; all we need to do is that we perform such an operation, and store it

back here. So, here also this is a kind of operation that is required. Fetch the content of

memory location and load it into register, basically load.

So, we are loading a data from this memory location and we are storing it in R1. Or store

a word of data from a register into the memory location. So, we are storing a word that is

R1 with whatever value is stored in R1 into LOCA or memory location. So, this is for

load, this is for store. So, these are the various kinds of operation that we can have.

(Refer Slide Time: 22:48)

Let us come to 3-bus organizations. Now in the previous case you have seen a single

internal bus organization. And in that single internal bus organization we will be seeing

in later lectures that only at a time, of particular value can be available in the bus. And

that particular value can go to any number of registers. But at a time only one data can be

available in that bus. If we want to make more data available then, what we need to do?

One possible way of doing so is having multiple-bus structure.

So, what happens in multiple-bus architecture? In multiple-bus architecture we have

multiple internal buses inside a processor. The MDR and MAR will be connected to the

same system bus. But, internally we will not have a single bus. We will see that a single

bus will restrict some operation to be done parallely. If you want to perform some

operation to be done parallely, we require multiple-bus architecture.

So, these are just some of the features. A 3-bus organization is internal to the CPU, as I

said, we will be looking into a bus organization which is internal to the CPU. We have

already seen a bus organization, which is a single-bus organization. Now we will be

seeing a 3-bus organization. The 3 buses allow 3 parallel data transfer operations to be

carried out. Less number of cycles in turn will be required to execute an instruction,

compared to single bus organization. We will be looking into this with examples later.

(Refer Slide Time: 25:05)

Now, let us see this particular multibus organization that is a 3-bus organization. In this

3-bus organization let us see what we have. This is a register file. In this register file

using VLSI technology what we can do is that, we can read multiple data. But we can

write in one data into the register file. So, two registers can be read at a time because we

have two buses. And the data from these register file is going to two different buses. But

write can happen only once, and it is coming also from a different bus. PC is incremented

by a different circuitry. That is an incrementor circuit, where PC will get incremented by

4.

Now, this is the ALU; the input of ALU is coming from two different buses. One is from

bus A another is from bus B. The advantage we can get here is that, we can make

available the data of R1 and R2 here, and if we perform that operation and both R1 and

R2 can be present at the same time. And we can also perform this ADD operation. And

we can also store back here at the same time. But in a single-bus organization, only one

particular data will be available in the bus at a time. As for multiple buses multiple data

can be available.

This is an instruction decoder. So, after from MDR the data will be available. And then

this particular data will be moved to IR, and the instruction decoder will decode the

instruction and specified operation will be carried out. MAR and MDR are connected to

the address and data bus of the memory as well. So, this is a 3-bus organization. We have

seen single bus organization; we have seen multiple bus organization. We will be seeing

in detail what is the advantage you get in course of time when we execute a particular

instruction using these bus organizations.

So, now we have come to the end of this lecture, where we have discussed about the

overall internal bus organization, how internally within the CPU the buses are organized.

Thank you.

