
Computer Architecture and Organization
Prof. Kamalika Datta

Department of Computer Science and Engineering
National Institute of Technology, Meghalaya

Lecture – 16
Amdahl’s Law (Part II)

(Refer Slide Time: 00:25)

Welcome to lecture 16 where we will continue with Amdahl’s law little more. Let us start

with an example where we see that, the total execution time of a typical program is made

up of 60% of the CPU time, and 40% of the IO time. So, out of total number of tasks we

are dividing into 2 types.  One is, CPU bound job another is IO bound job. So, CPU

bound job is taking 60% of CPU time and another is taking IO bound is taking 40%.

So, let us see this overall thing as CPU I/O CPU I/O. And we assume that there is no

overlap between CPU and IO operation; that means, when CPU is used, only CPU bound

job will be taken care of. When IO bound job is getting performed, only IO bound jobs

will be taking care of and so on. So, we want to see that, in this particular scenario, there

are 2 alternatives that we are trying to improve the performance.  So, we want to see

which one is better. So, first one is increase the CPU speed by 50%. And in another case

we are reducing the IO time by half; that means; when you are increasing the CPU speed

by 50% we are not doing anything on this 40%, and when we are reducing the IO time

by half, we are not doing anything on this 60%. So, let us see this.



(Refer Slide Time: 02:22)

Firstly, increase CPU speed by 50%. So, here F clearly is 0.60. And S will be 1.5. And so

overall speedup will be 1.25.

Similarly, we say that we reduce the IO time by half. So, as you are reducing IO time by

half; that means the speedup you are increasing by a factor of 2. So, in this case F is 0.40

and S is 2. You put it in the formula of speedup and we are getting the same result. So,

both alternatives result in the same speed up, as what I said just.

(Refer Slide Time: 04:04)



Now,  let  us  take  another  example.  Suppose  that  compute  intensive  bioinformatics

program is running on a given machine X that takes 10 days to run. So, it is compute

intensive. Lot of computation is going on for this program. The program spends 25% of

it is time doing integer instructions, and 40% of the time doing IO.

So, 25% of the time is spent on doing integer, and 40% of the time doing IO. Which of

the  following  2  alternatives  provides  a  better  tradeoff?  The  first  one  is,  use  an

optimization compiler that reduces the number of integer instructions by 30% assume all

instruction take the same time. And the next one is we are optimizing the IO subsystem,

that reduces the IO operations from 10 micro second to 5 micro second. That is again we

are saying a speedup of 2. Let us see the 2 alternatives.

(Refer Slide Time: 05:44)

So, in the first  case F is  25%, and S is  we are reducing that by 70 because 30% is

reduced. And the program spends 25% of the time in integer operation. So, S becomes

100 / 70. So, 0.75 if there is no change on that. And 0.25 we are making a change, and

we are getting a speedup of 1.08.

Let us take the next alternative where IO bound job is 40%. And the rest 60% we are not

doing anything. But on that 40% we are having a speedup of 2. So, in this case if we

solve for the speedup equation, we are getting 1.25. So, in this case we can say that,

alternative B is better than alternative A, where here the speedup on 25% is made and

here the speedup on 40% is made.



(Refer Slide Time: 07:10)

Let us move on with the Amdahl’s law Corollary 1. What it says is, make the common

case fast. What do you mean by common case? By common case we mean that most

time consuming and not most frequent. So, let us understand this. There are 2 things.

One is when we say that we are more frequently doing something. But, more frequently

with  which  we  are  doing  it  is  taking  less  time.  But  the  most  common  means  it  is

consuming  the  most  amount  of  time.  So,  it  is  most  time  consuming.  According  to

Amdahl’s law, improving  the  uncommon case  will  not  result  in  much  improvement.

Rather if we make improvement on the common case, the improvement will be much

more; that means, the portion of the task that is taking more time we will try to improve

on that part. Rather than which is more frequently used because most frequently that use

that is not taking much time.

So, the common case has been determined through experimentation and profiling. So,

how we can say that this part is common, through experimentation and through profiling.

When  optimizations  are  carried  out,  a  case  that  was  common  earlier  may  become

uncommon later or vice versa. So, you need to analyze the program. You need to analyze

it time and again to understand this. So, when we are saying common part, common part

means most time consuming part. So, you have made some improvement and you have

reduced that time. And then again if you can finally say that now once this common part

I have reduced, next time when you do that some it might change. So, this particular

phenomenon  says  that  when optimizations  are  carried  out,  a  case  that  was  common



earlier  may  became  uncommon  later  because  you  have  already  taken  care  of  that

particular case. 

(Refer Slide Time: 09:47)

Now Amdahl’s law Corollary 2, for latency what it says let us see. Lnew = Lold / speedup. 

(Refer Slide Time: 10:33)

Let us see this Amdahl’s non-corollary. So, here what it says that, Amdahl’s law does not

bound the slowdown; that means, we are always saying that a part of the program where

improvement can be made, and you can finally, get an overall speedup of this much. But



what if those portions where we are not making, if you slowdown that particular portion

then how it will affect?

So,  the  parts  that  are  not  used  so  much  and  you  are  trying  to  further  make  some

techniques such that that particular part will reduce. I mean, the performance of that part

will further reduce. So, you are not making any speedup on that and you are for making

something such that, that performance of that part will further reduce. Then what will

happen? So, things can get arbitrarily so slow if we hurt the non-common case too much.

So, we should not do that as well.  So,  those portions which are not so common we

cannot hurt that too much. So, we will see this example suppose F is 0.01 and Lold is 1.

Now, we are making a part 100 times worse. So, this becomes the speedup becomes

0.001 on the uncommon part that that that is now your F. So, Lold will become multiplied

by 0.01. That is, 0.99. So, how much it is coming? It is coming 10 times the old value.

So, Lnew is 10 times the old value. So, it has worsened. And in case 2, if it is 105 times

worse then what is happening? Finally, we are getting 1000 * Lold, which is even worse.

So, we cannot just make the non-common part too much bad. 

(Refer Slide Time: 13:18)

Now, let us see this extension of Amdahl’s law to multiple enhancements. By multiple

enhancement what we are meaning is that, earlier we were we were saying that we have

a total portion, out of which one part we are making some improvement. And the other

part remains the same. Now let us say, in a computation, we have IO bound job, we have



CPU bound job we have some other kinds of job as well.  And now we are making

improvement on these parts. So, earlier we were just making improvement on one, now

we are saying that we will make improvement on these as well, others as well. So, in that

case what will happen? How this multiple enhancement can be taken care in Amdahl’s

law? Let us see we have already seen for one part one fractional part if you improve what

final speed up we will gain. Now we will see that we have multiple parts and we are

improving multiple parts, and now how much you will gain.

Suppose we carry out multiple optimizations to a program. So, optimization 1 speeds up

fraction F1 of a program by factor S1, optimization 2 speeds of fraction F2 of a program

by  a  factor  S2.  So,  F1  and  F2  are  two  fractions,  on  which  we  are  making  the

improvement now. On which we are making improvement S1 for F1, S2 for F2. So, this

is  the part  where no improvement  can be made.  And this  is  a part  on which we are

making improvement S1. And this is a part where we are making improvement S2. So,

earlier it was taking F1 and F2 and it has got reduced, and now we are getting F1 / S1

and F2 / S2.

So, similarly what will be the speedup? The speedup formula will be same. So, this will

be the total improvement when we are saying that we have multiple enhancements. We

are not making enhancement on a single portion, rather we are making enhancements on

both the portions.

(Refer Slide Time: 16:11)



Now, let us say in the calculation as shown it is assumed that F1 and F2 are disjoint. So,

in this particular case F1 and F2 are disjoint. And what we are doing that we are making

improvement  on this  part  only and this part  only, but now let  us say there can be a

situation like this.

(Refer Slide Time: 16:38)

So, in this situation what happens? This is your part, with says this is your F1 part and

this is your F2 part. And this part is having both F1 and F2. So, this enhancement can be

taken care of separately, this part enhancement can be taken care separately, this part this

part, and this part separately. Earlier it was having disjoint. So, earlier the case was this

was one part this was another part. So, this is considered F1 and is considered F2. No

common part was there, but now we are extending F1 till here and we are extending F2

till here. So, this has become now the common part, which contains both F1 and F2.

Now under such scenario, let us see how we will calculate the speedup. So, S1 and S2 do

not apply to the same portions of execution.

If  it  is  not  so,  we have  to  treat  the  overlap  as  a  separate  portion  of  execution,  and

measure its speedup independently. Now this is very true that, this is one part, this is one

part. And this should be also considered another part. And we have to calculate speedup

separately. Although, we have a common part of both F1 also is here and F2 is also here,

but we have to take care of this. If it is not so we have to treat the overlap as a separate

portion as it is not disjoint. So, we have to take care this part, this part, and this part



separately. So, in this case what will happen? This is the portion where no change will

happen, and these are the 3 portions where you are making some changes. Where this

part is F1 only, this part is F2 only, and this part is both F1 and F2.

So, what we are doing? F1 only with S1 only, F1 and F2 with S1 and S2, and F2 only

with S2 only. It was initially this much, after this reduction it has become this much.

Initially this much after reduction it has become, finally the speedup equation can be said

as this. So, we are taking into consideration all the parts, plus F1 only divided by S1

only, plus F2 only divided by S2 only, and then take into consideration both F1 and F2

divided by S1 and S2.

(Refer Slide Time: 19:55)

Now, this  is  the  general  expression just  now what  we have  said.  So,  we assume m

enhancements of fractions. So, in that case what will happen? The overall speedup will

be 1 divided by (1 - summation of all these Fi’s). How many enhancements will be there?

Those many Fi’s will come here. Plus, summation of Fi divided by Si. So, this is a general

expression of speedup when multiple enhancements are taken into consideration.



(Refer Slide Time: 20:45)

Now, let us take an example. Although we have not discussed about cache memory yet, I

can just tell you that cache memory is a fast memory that sits is between CPU and main

memory. And it is used to enhance the overall performance of the memory, i.e. overall

speedup  of  the  memory.  So,  consider  an  example  of  memory  system.  Where  main

memory and a fast memory called cache memory is used. So, this is your cache memory,

this is your main memory. Frequently used parts of the program or data are kept in cache

memory.

Suppose, use of cache memory speeds up memory access by a factor of 8. So, whenever

cache memory is used then the speedup of memory is by a factor of 8. Without cache the

memory operation consumes a fraction 0.40 of the total execution time. So, what will be

the speedup? So, in this case as without cache memory it was taking this much. Now

using cache memory, you can actually make us speedup on this 0.4 by a factor 8; and the

remaining will not change. So, if you put this in the formula of speedup you will be

getting 0.91.



(Refer Slide Time: 22:41)

Let us take another example here where we consider 2 levels of cache memory where we

see that the first level is called L1 cache. And the next level is called L2 cache. The

assumption  here  is,  without  the  cache  memory, the  memory operations  take  30% of

execution time. When L1 cache is used it speeds up 80% of the memory operation by a

factor of 4.

Now, out of total execution time only memory operation is 30%. Now out of that 30%, if

L1 cache is used 80% of the memory operation improves by a factor of 4. And the L2

cache speeds of 50% of the remaining 20% of the memory operation by a factor of 2. So,

there are 2 things out of total execution time, the memory operation is taking 30%. Out

of this 30%, now 80% of the memory operations are found in L1 cache. And 20% of the

memory operation is found in L2 cache. 

So, when L1 cache is used 80% the memory operation is improved by a factor of 4. And

when  L2  cache  is  used,  50% of  the  memory  operation  speeds  up  by 20% memory

operation by a factor of 2. Because this is 80% to remaining 20% of the total 30% is

50%. So, L2 cache speedup is 50%. We want to find out the overall speedup. Let us see

how we can find out the overall speedup.



(Refer Slide Time: 25:02)

Memory operation 0.3, that is 30%. So, FL1 will be when L1 is used; as L1 is used 80%

of the time it will be 0 0.3 * 0.8 = 0.24. And SL1 is 4 that is already given. Similarly, for

FL2 that is 0.3, multiplied by it was 80%. So, this will be 20%, out of 20% it is 50% used.

So, 0.5 that is coming on to 0.03 and SL2 will be 2. Now we will put this value here and

we are getting a speedup of 1.24. 

So, we came to the end of lecture 16 and which will end the week 3 lectures. So, in this

week we have actually seen how we can calculate performance. How Amdahl’s law is

actually happening. And how it is helping us to determine that, how much speedup can

be actually achievable when only a part you are actually making the improvement.

Thank you.


