
Computer Architecture and Organization
Prof. Kamalika Datta

Department of Computer Science and Engineering
National Institute of Technology, Meghalaya

Lecture – 14
Summarizing Performance Results

(Refer Slide Time: 00:29)

Hello. So, let us come to lecture 14 where we will be summarizing the performance

results. What we have seen till now is using real programs for benchmarking like. So, it

is very much essential that the benchmark should consist of set of programs, and those

programs should be very much relevant.

Now how to consolidate all the run times and come up with a single metric that can be

used for comparison? So, we have seen that MIPS is something we are calculating, we

are calculating the total execution time. We have so many metrics now. And I can say

that a machine A is performing some set of tasks that is taking so and so time. A machine

B is also executing the same program and it is taking so on so time. Another set of

programs is also been executed by both the processors, and they are giving some time.

Now, it may happen that A is giving better result compared to B for program 1. And B is

giving better results for program 2 as compared to program 1. How can you tell that

which processor will be better? So, we shall be discussing several measures that are used

for this consolidation basically.

(Refer Slide Time: 02:01)

By the term reproducibility, we mean that we can reproduce the same thing, the same

result. Now, I should also say that it is not only that same program will get executed in

other machine and we will check the result. I have to also give some more details. What

are those some more details? Like what is the execution environment that I am using?

How much is the disk utilization? What kind of cache memory I am using? What are the

other features along with that program when you are executing?

So, you have to give all those parameters along with the program. Like how much swap

space is possible, and so on and so forth. The actual run time of a program on a machine

depends on so many factors. One is the degree of multi programming. Like, whether you

are using multi programming or not. Disk usage --- how much disk usage is being done,

compiler optimization. So, reproducibility of experiments is very important; that means,

anyone should be able to run the experiment and get the same result. This can only

happen if you actually do the same thing that other computer was doing for executing

that program.

So, benchmark must specify the execution environment very clearly. For example, the

SPEC benchmarks mentions details such as extensive description of the computer and

the compiler flags. So, SPEC benchmark is not only giving you a program, along with

that program it is giving you some more details, such that you will be able to reproduce

the same thing, if you execute that particular program. Hardware, software and baseline

tuning parameters, like the swap space, like the cache memory, and so on and so forth.

(Refer Slide Time: 04:40)

So, how to summarize performance results? The choice of a good benchmark suite that

relates to real applications is essential to measuring performances. The meaning is, the

choice of a good benchmark suite is really very important. For a single program it is very

easy to say that which computer runs faster. But will it be equally easy, when you have a

number of programs running on different machines? And you are getting different

results. How can then you say that that this computer performs better than the other? Let

us see this example, where programs are run on CPU A, CPU B, and CPU C --- 3

different processors. In seconds, program 1 is taking 1. This is taking 10 and this is

taking 25, and these are taking this.

(Refer Slide Time: 05:45)

So, total time taken is this. Now let us see. We can make the following statements, which

may depict a confusing picture, when considering together. If you consider it separately,

for program 1, A is the fastest; it takes 1 second. And for program 2, C is the fastest, we

can say. Now, let us say this with respect to A; A is 10 times faster than B. Very true, A

takes 1 second, B takes 10 seconds. Similarly, B is 2 times faster than A for program P2.

This is for program P1. Now B, which is taking 250 second and program P2 for

processor A, it is taking 500.

So, this is taking twice the time. So, we can say B is 2 times faster than A for program

P2. Again, A is 25 times faster than C for program P2. And C is 50 times faster than A for

program P2. Because P2, this takes 500 this is taking only 10. Similarly, you can find out

B is 2.5 times faster than C for program P1. C is 25 times faster than B for program P2.

Now how can I say which processor is the best? It is more confusing, rather than getting

some inference.

So, how to summarize this performance result? Let us see how we can do this. Choice of

a good benchmark suite that relates to real applications is essential to measuring

performance. So, for a single program it is very easy to say, but; however, when there are

multiple programs, the comparison may not be so straightforward. So, we need to come

up with some solution.

(Refer Slide Time: 08:02)

So, let us see the total execution time first. What is the total execution time? For CPU A,

the total execution time is 501. For CPU B, the total execution time is 260. And for CPU

C, it is 35. Based on this measure what we can see or what we can comment is, B is 1.93

faster than A for the 2 programs.

Now, we are not taking into consideration individual programs. Now we are saying

something in terms of both the programs. C is 14.31 times faster than A for 2 programs.

And C is 2 point 7.43 times faster than B for 2 programs. If the actual workload consists

of running P1 and P2 unequal number of times, again this is something else. First we

have given 2 programs and we are saying this is the execution times. And now we are

saying that these programs how many times they will be running. So, the frequency of

running those programs is now coming into picture.

(Refer Slide Time: 09:27)

So, if the actual workload consists of running P1 and P2 unequal number of times, this

measure will not give the correct result either. So, now let us come up with something

called arithmetic mean. So, this is defined as the average execution time, for all the

programs in the benchmark suite. By average execution time what we mean is that, we

are averaging the execution time summation of all divided by n. This is your arithmetic

mean where XTi denotes the execution time of i-th program. And there are n programs.

(Refer Slide Time: 10:02)

Similarly, what is weighted execution time? If the program constituting the workload do

not run equally, as I said program A can run more times than program B. For some

processor; program B can run more times. So, based on this how you can calculate.

So, for this if 40% of the task in workload is program P1, and 60% is program P2. We

can define some weights associated with these programs. So, program P1 is having

weight W1 = 0.4. And W2 = 0.6. Because P1 it is 40% of the tasks of the workload, and

60% for P2. Now we will see two alternative methods. One is weighted arithmetic

means. Another is normalized execution time.

(Refer Slide Time: 11:21)

Now, arithmetic mean we have already seen. Let us see what is weighted arithmetic

mean (WAM). It is computed as a sum of products of weighting factors and the

execution times. So, we are not only considering only the execution time, we are taking

into consideration the execution time and the weights associated with that particular

execution time where Wi denotes the weighting factor of program i. This is the weighted

arithmetic mean where we multiply Wi by execution time of i. And we take the sum.

(Refer Slide Time: 11:56)

Now, let us see these 2 programs again. So, weight for first one is 0.50 and weight of

second one is 0.50. So, we get weighted arithmetic mean of A as 250.5. How we are

getting that? Let us see this. So, here you can see that 0.50 is multiplied by 1 for program

P1 for CPU A.

(Refer Slide Time: 12:29)

So, this is CPU weighted arithmetic mean for A. We are multiplying this weight with the

time that is 1. And similarly, we are multiplying 0.50 by 500 which is for program P2.

And we are getting weighted arithmetic mean as 250.5. Weighted arithmetic mean for B

is this, and for C is this. Depending on these values, we have calculated and depending

on these weights. Similarly, if you change the weight of these, the weighted arithmetic

mean is different. Again if you change the weighted arithmetic mean is different. So, we

here also we show you, how we can calculate the weighted arithmetic mean for several

CPUs given the execution time for some programs.

(Refer Slide Time: 13:51)

Now, coming to normalized execution time. As an alternative we can normalize all

execution times to a reference machine. And then take the average of the normalized

execution times. So, now we are saying that there will be a reference machine, and with

respect to that reference machine we will be calculating this. So, we are normalizing it

with respect to a reference machine. Followed in SPEC benchmarks where a SPARC

station is taken as the reference machine. So, what will be the average normalized

execution time? So, this can be expressed as execution time, what is XTR? Execution

time, with the reference XTRi and summation of all of these.

So, one machine can be taken as a reference and can be calculated based on that. We will

be seeing that next. That is called normalized arithmetic mean. Which is execution time

of the programs with respect to reference machine summation of that divided by n.

(Refer Slide Time: 15:11)

So, here XTRi denotes the execution time for i-th program normalized to the reference

machine. This is normalized geometric mean. Earlier it was normalized arithmetic mean.

Now we are going to normalize geometric mean.

(Refer Slide Time: 15:38)

Now, let us see how do we compute this. So, program 1 has the same parameter that we

were using. Now see what we are doing. These values we are calculating by with respect

to normalized to A; that means, when we are saying normalized to A we are making 1

here, these 2 will become 1. And with reference to that what are these values. So, now

see this is 1. 10 divided by 1.25 divided by 1. Similarly, this one is, how do you get 1

here? You will get 1 here by dividing by 500.

So, this has become 1 you divide by 500 it will become 0.02. So, all these values are

normalized with respect to A.

(Refer Slide Time: 16:49)

Let us see, how do we normalize with respect to B similarly. When we say we

normalized with respect to B, then we have to make all these as 1, 1, 1. Initially it was 10

this was 250, and 0. So, what we are doing? We are making others reference normalized

to B. So, what we are doing; this is 1 divided by 10, and this will become 25 divided by

10, and here it was 250. So, you have to divide it by 250.

So, we are dividing 500 divided by 250 to make it 1. So, we will get here 1. And 10

divided by 250. So, just see this what we are getting. We are normalized this with respect

to 1, we are making this as 1. And now these are the 2 values we are getting. And

similarly we have normalized this 2, see these 2 have become 1. And we are getting this

value with respect to the difference machine. Now once we are done with this we

calculate the arithmetic mean and we calculate the geometric mean.

Now, say arithmetic means still we cannot say which one is better. So, in this case this is

one. In this case this is one. And in this case this one. So, it is very difficult to come up

with a conclusion based on this, but you see the geometric mean seems to be consistent.

C is taking the least for here, also here. So, the geometric mean is considered as one of

the metric that can be used for evaluation. Although arithmetic mean cannot be used

properly.

(Refer Slide Time: 19:11)

So, in summary what we can say that, in contrast to arithmetic mean or geometric mean

normalized to the execution time are consistent, no matter, which machine is the

reference one. So, what we have seen, we have made A as a reference machine then also

see C is better. We have made B as a reference machine in that case also C is giving

better. And when you are making C as the reference machine then also it is giving better.

So, the result seems to be consistent, even if different programs are executed different

times.

Hence arithmetic mean should not be used to average normalized execution times, but

there is one drawback of geometric means that they do not predict the execution time.

You cannot give a prediction of the execution time, but it is consistent because it is

giving that value where C seems to be better. And it also encouraged hardware and

software designers to focus their attention to those benchmarks where performance is

easiest to improve rather than the ones that are slowest. So, we generally improve where

the requirement is high; that means, certain instruction are executed more we try to

improve that part more. Certain instruction and executed less, but that does not mean we

will leave that part also. That part also we should take into consideration. But it generally

encourages the hardware and software designer to focus attention at those benchmarks

where performance is easiest to improve. That is the thing.

So, we came to the end of this lecture. So, in the last three lectures what we have tried to

show is, what is performance. What performance metrics can be used?

Thank you.

