
Computer Architecture and Organization
Prof. Kamalika Datta

Department of Computer Science and Engineering
National Institute of Technology, Meghalaya

Lecture – 13
Choice of Benchmarks

Welcome to the next lecture. So, in this lecture we will be seeing the choice of

benchmark. So, in the previous lecture what we have said is that how do we compute the

execution time of a program. And then we know that these are the ways through which

you execute you can compute the execution time of the program. Now still how you can

say that this computer is better than this? Now comes choice of benchmark; that means,

what you will be using which benchmarks to use such that by executing this set of

instruction we can compare performance.

(Refer Slide Time: 01:10)

So, basically here the basic concept is how to compare the performances of two or more

computers. This is what we are discussing from the last lecture as well. So, we need to

execute some programs and measure the execution times. Set of standard programs are

used for this for this comparison and we call this as benchmarks. So, benchmarks are

nothing but some set of programs, which are set as benchmarks basically for this

comparison. And various metrics have been proposed to carry out the evaluation we will

be discussing that next.

(Refer Slide Time: 01:54)

So, let us see some early metrics that are used. One is millions instructions per second

(MIPS); this is computed as instruction count divided by execution time into 10-6. So,

this is dependent on what. So, basically we are trying to get how many millions of

instructions that are executed per second. This is dependent on instruction set, which

makes it difficult to compare MIPS of various computers with different instruction set,

because see different computers will have different instruction set different kind of

architectures, but then how we can say that this can be a metric that can be used to

evaluate for all. So, this becomes difficult.

So, this is dependent on the instruction set. MIPS also varies between programs running

on the same processor; why does this varies? Because different compilers will generate

different codes; suppose say you have run a particular program and it has generated some

set of a codes; the same program can be run on another compiler and may generate little

different code. So, at that point of the time also this MIPS will be different and also it has

been observed that higher MIPS rating may not mean better performance. So, we cannot

say that if the MIPS rating is high, that means it performs much better. Let us take an

example a machine with optional floating-point coprocessor.

So, when aco processor, meaning is we have a machine with an optional floating-point

coprocessor. So, when coprocessor is used overall execution time will be less because

you are using a coprocessor in which the task will can be performed in a much faster

fashion. So, in turn your execution time will become less, but for doing you may use

some complex instructions. So, if you use complex instructions then it will give you a

smaller MIPS value. So, when you use a coprocessor your overall execution time

becomes less, but you are using more complex instruction for execution. That is the

MIPS will be much less. Same way for a software routine it takes more time, but it is

giving higher MIPS value why because they will be more number of instruction that are

getting executed, but in turn the time using a software routine will be much more. So,

this is a fallacy this is a problem here. So, we are using a coprocessor which is making

the entire process faster, but still we are getting smaller MIPS, but another which is using

a software routine which is getting higher MIPS, but at the same time it takes more time

as well.

(Refer Slide Time: 05:38)

So, MIPS rating is only valid to compare the performance of 2 or more processors

provided that the following conditions are satisfied. What are the factors? First one is the

same program is used. The same instruction set architectures, used set of instruction

should be same and the same compiler is used. If you have all these things together, then

only we can say that MIPS rating can be taken for performance comparison.

So, in other words we can say that the resulting programs used to obtain the MIPS rating

are identical at the machine code level with the same instruction count. You must have

same instruction count you must have same those machine code level instructions, then

only you can say that you can use MIPS as a metric to evaluate the performance.

(Refer Slide Time: 06:53)

This is million floating point operations per second (MFLOPS). So, it simply computes

the number of floating point operations executed per second. Now this obviously, will be

more suitable for certain applications where we will be using floating point computation.

Let us say for certain application there are not so much floating point instructions.

So, in that MFLOPS will be much less, but that does not means that the performance of

that is poor. So, here again different machines implement different floating point

operations. Different floating point operation takes different times. Addition of a floating

point will take less time may be compared to the division of a floating point.

So, we cannot really say that how well MFLOPS as a metric will give you a correct

performance evaluation. Compilers have no floating point operation and has MFLOPS

rating as 0. Hence this is not very suitable metric across machine and across programs.

MFLOPS cannot be used as a metric across any machines or across any programs

because different machines have different features different characteristics. So, it might

not be a good idea to rely upon a metric like MFLOP.

(Refer Slide Time: 08:53)

Let us take an example. Consider a processor with three instruction classes A, B and C

with the corresponding CPI values being 1, 2 and 3 respectively. The processor runs at a

clock rate of 1 GHz. So, for a given program written in C, two compilers produce the

following executed instruction counts.

So, instruction count for A type instruction is 7 for compiler 1, 2 for type B, and 1 for C

type C classes. Similarly, for compiler 2 the number of instruction count for A type is 12,

B type is 1 and C type is 1. Let us see how do we compute the MIPS rating and the CPU

time for the two program versions. So, we have been given with the CPI values for the

various types of instruction that is A, B and C as 1, 2 and 3 respectively and the

processor runs at a clock rate of 1 GHz. So, these are the parameters that are already

given.

(Refer Slide Time: 10:21)

Let us see how we will calculate the MIPS rating and the CPU time. So, MIPS is clock

rate in MHz divided by CPI. And CPI is CPU execution cycle divided by instruction

count. And CPU time will be instruction count multiplied by CPI divided by clock rate or

multiplied by clock period. Let us say for compiler 1, 7 is the total number of instruction

type A which is multiplied with 1 that is the CPI for that particular type A instruction.

Similarly, 2 multiplied by 2. So, basically we are doing 7 multiplied by 1, 2 multiplied by

2, and 3 multiplied by1 one for compiler 1. So, 7 multiplied by 1, 2 multiplied by 2, and

1 multiplied by 3 divided by total number of instruction. Total number of instruction was

7 + 2 + 1 = 10. So, 14 / 10 which is coming to 1.40.

Similarly, MIPS rating will be 1000 MHz divided by 1.40. So, we converted it to MHz

because we have to find out in terms of MIPS. So, that is 1000 divided by 1.40 that is

coming to 714.3. Now what is the CPU time? The CPU time can be can calculated by 7

+ 2 + 1. So, we get the time as 0.014 seconds. So, this much second it is taking to

execute for compiler 1 and MIPS rating for this is 714.3.

Let us take for the next compiler in the similar fashion we compute the CPI 12 into 1, 1 x

2 + x 3 divided by total number of instruction. And we get 1.21 as the CPI similarly

MIPS rating can be find out by 1000 MHz divided by 1.21, that comes to 826.4 MIPS.

And similarly for CPU time we will use the same instruction count multiplied by CPI

divided by clock rate, which is coming down to 0.017.

So, now you see that the MIPS of this is higher. So, it has got higher millions instruction

per second, but the execution time of compiler 1 is less. So, here you can clearly see that

the execution time of compiler 1 is less, but the MIPS of compiler 2 is more. So, MIPS

cannot be the right choice for in such cases. So, MIPS rating indicates that compile it 2 is

faster while in reality the reverse is true.

(Refer Slide Time: 13:57)

Now, let us take an example. So, this is a C loop. What we are doing inside the C loop,

we are simply adding a constant value stored in variable s to A[k], and we are storing

back in A[k].

Similarly, for the next one and this is going on in a loop let us write the assembly

language code for this particular C code segment. So, these are the few things you have

to consider. $t1 stores the address of s, s is a variable which is a constant some value is

stored here, and $t3 stores the value of s and $t2 points to the first location of this array

of this particular array. So, here initially what we are doing we are loading the word from

this location 0 of $t1, $t1 is having the address of s. So, value of s is stored in $t3. We are

adding an immediate value to $t2, $t2 points to the first location of the array. And we

have to compute something for this thousand times. So, we are multiplying 4000; we are

adding 4000 to $t2 because each are 4, 4, 4 by, so, 4 multiplied by 1000. So, which is

coming down to we are adding it to $t2 and we are storing it in $t6. So, $t6 stores the

final value. So, we have to go till that value to execute it.

Next word inside the loop these are the following statement, that are getting executed

first what we are doing we are loading the word from the first location of the array that is

A[0]. We are storing it in $t4. Then what we are doing the value of s is stored in $t3 and

the array value is stored in $t4. So, $t3 and $t4 we have to add and we are storing it in

$t5. So, finally, we are adding $t4 and $t3 and we are storing it in $t5 and finally, we are

storing back this $t5 the added value in 0 of $t2. So, in that location we are again storing

it back. And finally, what we have to do we need to increment to the next location. So,

the first part is done now we are moving to the next location. So, for the next location it

is added with 4 again and then it is transferred there.

Now, branch if not equal we are doing such that whether we have reached to that point or

not, $t6 is equal to $t2 because at every point we are adding 4 to it. So, when it reaches

the last element it will come out of the loop, when till it is not equal $t6 is not equal to

$t2 is not equal to $t6 we will loop, when it is equal it will come out of the loop. So,

these are the following assembly language code that we are executing for this set of

codes the code is executed on a processor that runs at 1 GHz that is the clock period is

one nanosecond, there are 4 instruction types with CPI values are shown in this table.

Now, see ALU operation which are ADDI; these are ALU operation. And the CPI of

those operations is 2. Similarly, you have load. Load is LW the CPI is 5, you have SW

the CPI is 6, and you have a BNE type of instruction where the CPI is 3.

(Refer Slide Time: 18:49)

Now, let us see the code has two instructions before the loop and 5 instructions in the

body of the loop that executes 1000 times. So, outside the body of the loop you see you

have two instructions. And inside you have 5 instructions 1 2 3 4 5 and each of these

instructions is executed 1000 times because this loop is executing 1000 times. So, what

will be the total instruction count? There are 5 instructions and each instruction executes

1000 time. So, 5000 and 2 instructions outside the loop plus 2 it will become 5000. 2

number of instructions executed and fraction Fi for each instruction type. So, let us

calculate this number of instruction executed and fraction of instruction Fi for each

instruction type.

Let us first calculate the total number of instruction. So, outside the loop there is one

ALU instruction and inside the loop there are 2 ALU instructions. So, these 2 ALU

instructions each will be executed 1000 times. And this instruction will get executed one

time. So, inside the loop there are 2 ALU instructions that are executed 1000 times, and

this is executed one more time. So, 2001, similarly you can calculate for all load store

and branch store and branch are only 1, 1 instructions are there this is store and this is

from this is executed thousand time this is executed 1000 times.

So, what is the frequency --- total number of instruction of such kind divided by the total

number of instructions, which is coming to 0.4, that is 40%. This is coming 20%, this is

coming 20%, and this is coming 20%. Now how do we calculate this is the frequency of

a loop operation, this is the frequency of load type and so on. So, total CPU clock cycles

are 2001 x 2, 1001 x 5, 1000 x 6, 1000 x 3. So, we are taking all this from this CPI we

are multiplying the CPI with the total number of instruction that we have found out

previously and we are getting the total cycles as 18007. So, this is the total CPU clock

cycle divided by instruction count you get the CPU as 3.6.

Now, you can calculate the total execution time which is IC which is total instruction

which is 5002 CPI that we have calculated, and this is the clock period which is coming

to 80 microsecond this is how we calculate it.

(Refer Slide Time: 22:03)

Now, how do you see the clock rating? Clock rating will be clock rate divided by CPU

that is coming to 277.8 MIPS. So, the processor achieved it is peak MIPS rating when

executing a program that only has instructions of type with lower CPU CPI that is ALU

type instruction. So, if you only execute such kind of instruction where the CPI is less

that is you see the CPI of ALU type is only 2, but for store load branch is moved.

Now, if you only execute ALU, which only those type of instruction where CPI is less

then you can get the peak MIPS rating that is coming to 500 MIPS, but if you use with

this mixture where the CPI is found out by calculating taking into consideration all the

types of instruction and the frequency at which all these instructions are occurring then it

will be coming to something lesser MIPS.

(Refer Slide Time: 23:16)

So, next let us see choosing programs for benchmarking. Now how do we choose

programs for this benchmarking? Suppose we are trying to buy a new computer and

there are several alternatives possible. So, how to decide upon which one is the best. The

best way that is that can be used is to run the actual application that you are expected to

run that is the actual target workload; that means, that particular computer you will be

using more floating point operation. So, you should have such kind of program in place

that you will run on that machine and you will see that what is the performance coming.

So, actually you are running certain kind applications that will give you the best result.

So, choosing the programs for benchmarking is really very important, but not possible

for everyone to do this while purchasing. So, what we do we often rely on the methods

that are standardized to give us a good measure of performance. So, there are some

standardized methods that are used which can be considered as a good measure for this

performance.

(Refer Slide Time: 24:30)

So, different levels of programs are used for benchmarking --- one is real application, can

be kernel benchmarks, some toy benchmarks, and some synthetic benchmarks. Let us see

an overview of all these things.

(Refer Slide Time: 24:45)

What are real applications? We select a specific mix of suit of programs that are typical

of large application or workload. Some of the examples are SPEC95, CPU2000, etc.

SPEC stands for System Performance Evaluation Corporation and this is the most

popular and industry standard set of CPU benchmarks. So, SPECint95 consists of 8

integer programs. SPECfp95 consists of 10 floating-point intensive programs. SPEC

CPU2000 consists of 12 integer programs and 14 floating-point intensive programs, and

SPEC CPU2000 consists of 12 integer programs.

So, as we are moving from 95 to 2000 to 2006 the numbers are increasing. So, we are

putting more workload because their advancement in these clock speed is increasing. So,

we can actually perform more operations. So, that is how it is moving.

(Refer Slide Time: 26:12)

So, these are SPEC95 programs (integer) --- what all kind of programs are present; a

game based on artificial intelligence, a simulator for motorola 88k chip, a gnu compiler,

compression and decompression utility, lisp interpreter, image compression and

decompression utility, perl interpreter, a database program. So, the SPEC95 program

consists of these following benchmarks.

(Refer Slide Time: 26:47)

Similarly, SPEC95 programs consist of these programs. And these are all these SPEC95

programs of floating point programs. So, they have a mesh generation program, shallow

water modeling, quantum physics, Monte Carlo simulation, solving hydrodynamic naiver

stokes equation, multi grid solver on 3D potential field, quantum chemistry simulation

and so on. So, these SPEC95 programs were having these programs.

(Refer Slide Time: 27:32)

Similarly, CINT2000 (integer) consists of these following programs. So, these are the 12

programs. They added something new which is VLSI place and route. This group theory

interpreter was also added which was not there previously in SPEC95.

(Refer Slide Time: 27:55)

So, these are some of the programs of CFP2000. So, it has got quantum dynamics these

are already there neural networks were added pollutant distribution is added nuclear

accelerator is added and many more.

(Refer Slide Time: 28:16)

Now, let us see what kernel benchmark is. Here what happens basically is that key

computationally intensive pieces of code are extracted from real programs. So, let us say

there is part of the program, where the computation requirement is moved. So, they take

out those part of the program from there and what they do unlike real programs no user

would be running the kernel benchmarks they are solely used to evaluate performance.

This is just used to evaluate the performance and as we know that kernels are also best to

isolate performance of specific features of a machine and evaluate them some of the

examples are Livermore loops, LINPAC, etc. And some compilers were reported to have

been using benchmark specific optimizations. So, as to give the machine a good rating;

that means, let us say we have so many benchmarks now.

So, now these are already available and you can use this to evaluate your performance.

So, some compilers typically use some of those features to accelerate the speed of those

programs only, but it may not work for any application it may work for specifically for

those applications, but if you are not using such kind of constructs that are used in those

programs then you will not be getting better result.

(Refer Slide Time: 30:10)

These are some toy benchmarks are also use the code typically between 10 to 100 lines,

and they are convenient and can be run easily on any computer. They have limited utility

in benchmarking and hence sparingly used.

(Refer Slide Time: 30:33)

Now, coming to synthetic benchmarks, what do you mean by synthetic? We know that

this particular machine has this much type of ALU operation, this much type of store and

load operation, etc. So, some synthetic benchmarks are generated, which will actually

resemble to that particular frequency of operation which is performed for certain

programs, but they are synthetic as they are not real benchmarks basically.

So, somewhat similar to the principles to kernel benchmarking, they try to match the

average frequency of operations and operands of a large program. Just now what I have

said let us say we have a program and we know that for this program 80% will be such

kind of instruction ALU operation and 20% will be store-load operation. So, we also

generate a particular program such that it uses same kind of features 80% will be ALU

and 20% will be other. Synthetic benchmarks are further removed from reality than

kernels, as kernel code is extracted from real programs while synthetic code is created

artificially to match an average execution profile. So, these are made artificially to match

an average execution profile. Some of the examples are Whetstone and Dhrystone; these

are not real programs.

So, we came to end of lecture 13. So, where we have seen that what the choice of the

benchmark, how do you choose a particular benchmark. So, that entirely depends on the

application for which you are designing or you require the CPU for what kind of

application.

Thank you.

