
Computer Architecture and Organization
Prof. Kamalika Datta

Department of Computer Science and Engineering
National Institute of Technology, Meghalaya

Lecture - 12
Measuring CPU Performance

Welcome to week 3 lecture. In the last couple of weeks what we have studied is how we

can execute an instruction, what the various architectures that are existing, what are

addressing modes, instruction format and various other things that are necessary for this

particular course. Apart from that, we have talked about a simulator that is SPIM, and we

have seen that how we can write programs using low level assembly language. In this

particular week, we will be looking into how we can measure the performance of a CPU.

We know that for any program, you need some instructions to execute that particular

program.

Now how you can actually measure the CPU performance. By that I mean, that you can

run the same program in 2 different CPU, and then how you can tell that which one is

better. So, in this particular week we will be looking into the various aspects of CPU

performance. And then we can say at the end of this week lecture, that how can you say

that my CPU is better than the other CPU.

(Refer Slide Time: 01:57)

So, coming to the introduction, we know that most processors execute instructions in a

synchronous manner using a clock that runs at a constant rate or frequency. So, what do

we mean by that.

Now, how instructions get executed through a clock; that means, a clock is coming? And

at the positive edge of the clock or within that clock period, we can say certain task is

performed.

Now what is clock cycle time? Clock cycle time is the reciprocal of clock rate. That is C

is 1 / f. Clock cycle time is often termed as clock period, which is the reciprocal of

frequency, that is 1 / f. First let us see these 2 factors f and C in some detail.

(Refer Slide Time: 03:29)

So, this is a clock, and this also a clock. Let us say in this clock, this is the off period, this

is the on period. And this whole is one period. And let us say we have another clock

whose period is little more.

So what we are doing? Here this is the off period and this is the on period. So, this is the

total clock. Similarly for this is the off period, this is the on period. So, this is your total

clock and so on. Now you see that, for this particular clock the time period is small, that

is, your clock cycle time is small. And in this clock, the clock cycle time is more. And

what we know that, in processors we perform a task with respect to these clocks. So,

whenever this clock is coming a particular task is getting performed. And so what we can

analyze from these 2 clocks. Let us see that for the first clock let us say the frequency is

1 GHz.

So what will be the time period? As I said time period will be 1 / f. So, time period will

be 1 / 109 second, that is 1 nanosecond. Now let us see about this particular clock. In this

clock the frequency is 500 MHz. So, as it is 500 megahertz, then f = 500 x 106 Hz. So,

time period T = 1 / f = 2 nanoseconds. That means, for the previous clock the time period

is 1 nanosecond. For this one, the time period is 2 nanosecond.

So which will be faster; obviously, the first one will be faster than the next one. So, now

we know how we can relate clock frequency with clock period.. Next we see that on

what factor does this clock rate depend on. So, there are 2 important factors on which

this clock rate depends. The first one is the implementation technology. So, by

implementation technology what we mean is that with the advancement of technology,

the size of transistors are becoming smaller and smaller. And with that the clock speed is

becoming faster the clock is becoming faster basically.

So this is a factor on which the clock frequency depends. Another is the CPU

organization. By CPU organization what we mean is that, suppose in a clock period we

say, that some part of the instruction is executed. So, basically an instruction is divided

into some cycles. I mean each of the work of that particular instruction is performed in

those cycles. And by CPU organization we mean how we can organize the CPU such

that, the number of tasks that can be performed within that clock period is maximized.

So, these are the 2 factors on which the clock rate actually depends. So, as I said just now

that the machine instruction typically consists of number of elementary micro operations,

that vary in number and complexity depending on the instruction, and the CPU

organization used.

(Refer Slide Time: 09:32)

We will take an example here --- ADD R1, R2. To execute this instruction what we say

that a machine instruction typically consists of number of elementary micro operations.

So to execute this particular instruction, we require certain steps. What are the steps? So,

what we need to do first this particular instruction is stored in memory. You have to bring

that from the memory. So, first is the fetch phase. Once you fetch, how will you fetch it?

The content of PC should be made available. using some control signals. We will make

the content of PC available, which is PCout we will see in details next. But in a simple

word, I will say that once we do this PCout, the content of PC is irrelevant to some bus.

And then we have to put this value in MAR memory address register.

So this we do: PCout, MARin, then we Read and then we do some other things. So, first

we fetch the instruction. So, with just only these steps, we cannot fetch. We may require

some more steps to fetch. Now what the point is one these particular steps can be

performed, let us say in one clock cycle. And there can be many more steps to execute

this machine instruction. What we require? Let us say we require 6 steps to execute this

instruction. And we see that each of these steps require one clock cycle. So, this is what

we mean by a machine instruction. Typically consists of number of elementary micro

operations that vary in number and complexity depending on the instruction and the CPU

organization used.

Now if you use a different CPU organization, these steps that I am saying might be

different. Like say, for one type of organization, it requires 6 steps. For another type of

organization, it may take 4 steps. So, we really cannot say that how you can differentiate.

It depends on the organization used and it depends on the complexity of the instruction

as well.

(Refer Slide Time: 12:54)

Now, moving on, I said a micro-operation is an elementary hardware operation that can

be carried out in one clock cycle. So, all the set of instruction as I said PCout, MARin,

Read and so on can be executed in one clock cycle. And in one clock cycle what we can

do basically is some register transfer instructions, some ALU operation instruction.

Because all those are within the CPU and for that we do not have to bring it from the

memory.

So whenever you have to bring it from the memory, we have to see that how much time

will be required for that. CPU is much faster compared to memory. Transferring or

getting a data from memory to CPU will take more time. Thus a single machine

instruction may take one or more CPU cycles to complete. We can characterize an

instruction by cycles per instruction. What do you mean by cycles per instruction? As I

said an instruction is divided into some basic operations. Some micro-instructions are

executed to execute that machine instruction. And all those those micro instruction that

are getting executed requires some cycles.

So ultimately an instruction takes certain amount of cycles to execute it. So, that is called

cycles per instructions. So, every instruction is taking some cycles to execute and that is

termed as cycles per instruction. And what is this average CPI of a program? Average

CPI of a program as we can say that see there can be many instructions and many

instructions can have different CPIs. So, average CPI of all instruction executed in a

program on a given processor. So, we average it; that means, some instruction, let us say

takes 5 cycles, some instruction takes 7 cycles, some instruction takes 4 cycles. We

average it out and then we say this is the average CPI. As different instructions can have

different CPIs we will see in detail.

(Refer Slide Time: 15:38)

So for a given program, compiled to run on a specific machine, we define the following.

Parameters for a given program, now we are talking about the program that is compiled

on a machine, these are the parameters that are important. What are the parameters? The

total number of instructions executed, we call it instruction count. So, for a program what

is the total number of instruction that is executed? The average number of cycles per

instruction as I have already discussed that is the CPI. So, if there are 20 instructions and

each requires some cycles. So, CPI is the total average number of cycles per instruction.

And finally, the clock cycle time or the period of the machine.

So now what will be the total execution time? So, the total execution time can be

computed as XT = IC x CPI x C. So, how do we evaluate and compare the performances

of several machines? Next we will see that for is the execution time. So, now, the

execution time is the number of instructions multiplied by the CPI, multiplied by the

clock cycle time. So, you multiply all these things you will get the execution time, we

call it XT. Now we will see how we evaluate and come compare between the

performances of several machines.

(Refer Slide Time: 17:57)

So one of the easiest method that can be used to compare is like we measure the

execution time of a program on two machines, that is A and B. And we see that execution

time of A is XTA and execution time of B is XTB. So, the performance of A is 1/XTA and

performance of B is 1/XTB. So, let us say the one processor performs a task in 10

seconds and another processor performs the task in 2 seconds. Which one is better? The

processor that performs a task faster means, less time is better. So, the processor that

performs within 2 seconds will be better.

Now we can estimate the speedup of machine A over machine B as performance of A

divided by performance of B. And performance of A is 1/XTA and performance of B is

1/XTB. So, if you just put on these two values in this place, you will get the speed up of

machine A over machine B. Now let us take some examples. Let us say a program is run

on 3 different machines.

(Refer Slide Time: 19:43)

So, you have machines A, B and C. And the execution times are 10, 25 and 75. So, what

you can see from this what we can say that A is 2.5 times faster than B.

So B is taking 25. So, we divide 25 by 10 and we get 2.5. So, we can say that A is 2.5

times faster than B. Similarly let us compare A and C. We can say A is 7.5 times faster

than C. And similarly B is 3 times faster than C. So, B is 25. So, 75 divided by 25 we get

3. So, B is 3 times faster than C. This is simple for one program, but what if we have

different set of programs, how do we compare, this shall be discussed in course of time.

(Refer Slide Time: 21:17)

Now let us take an example. Say a program is running on a machine with the following

parameters. So, what are the parameters, I give you the total number of instructions. So,

what is your total number of instruction; this is your IC. So, what is the average CPI

taking into account of different CPI is for these 50 million instructions, we get a CPI of

2.7. And what is the CPU clock rate? From frequency we can find out the time period by

C will be your 1 / 2x109 = 0.5 x 10-9 second. And as we know that the execution time is

IC x CPI x C. And all these values are provided here. We get XT as 0.0675 second.

(Refer Slide Time: 22:38)

Now, see what are the factors that affect performance. First one is the hardware

technology. Definitely if you make your clock cycle time smaller then it is pretty

obvious, that you will be getting better result, but at the same time you have to cope up

with the operations that can be performed in one clock period or one clock cycle. Next is

the hardware technology, that is, the organization. So, what all factors that depends on

this organization? First is the clock cycle time another is the cycles per instruction.

So let us say when we talk about organization, it depends on like a how your various

hardwares are actually mapped. So, depending on that definitely your CPI that is cycles

per instruction will vary you have an efficient organization, where is your cycles per

instruction can be reduced. So, this particular factor that is hardware technology that is

organization depends these are the factors that will govern, that is, your CPI as well as

your clock cycle time. Now instruction set architecture, what all factors will depend it?

What is the instruction set architecture? We mean, that how various kinds of instruction

you are putting it in your architecture. How many types how many varieties you are

putting it there.

So, definitely if you restrict the number of instructions to a minimum level for a program

you might require more number of instruction counts.

(Refer Slide Time: 25:13)

So, there are two things that can happen. Basically what I am trying to mean is that, let

us say you have ADD and MUL instructions. And in one case you only have ADD

instruction.

So in this particular architecture if you want to multiply two numbers you can simply use

MUL R1,R2, but in the same case if you want to use repeated addition, then you have to

use a loop. And that loop will perform that addition number of times. So, this particular

ADD instruction may be used in that loop repeatedly. So, the idea is if you have more

number of instructions, you might require less number of instructions in the end to

execute a program. In a similar case you have less number of total instructions, but in

that case you require more number of instructions to execute the same program. So, this

is the difference.

So these instructions set architecture will affect two factors, one is CPI, another is

instruction count. Now different compilers can generate different codes. Let us say for

the same program one compiler is taking 10 instructions, another compiler is taking 20

instructions. So this IC varies greatly on the compiler technology that is used. So,

nowadays the compiler is becoming more and more intelligent and they are going hand

in hand with the hardware. The compiler must know what kind of hardware architecture

you are using such that it will generate the code in a fashion that will be easy for

execution. And so such that it will also require less number of instructions and of course,

what are the factors will depend both the CPI and the instruction count.

(Refer Slide Time: 27:34)

So as I discussed in the previous slide, IC depends on program used, the compiler, and

the instruction set architecture. CPI also depends on program used, compiler, the

instruction set architecture, as well as the CPU organization --- how you organize your

CPU, how you organize your various hardware. So, final CPI will definitely depend on

the CPU organization that you are using. And finally, C depends entirely on the

technology used to implement the CPU. And this is very unfortunate that it is very

difficult to change one parameter in complete isolation from the others. So, the basic

technologies are very much interrelated to each other. So, we really cannot vary one

parameter completely compared to the other.

(Refer Slide Time: 28:43)

So what is the tradeoff here? If you see a RISC machine, the number of instructions per

program is more. So, increases the number of instructions per program, but at the same

time it decreases the CPI and the clock cycle time. Because the instructions and hence

the implementations are simple. But in CISC, decreases the number of instructions, but

increases the CPI and the clock cycle time because many instructions are more complex.

So, overall what has been found? It has been found that, RISC architecture gives better

performance. So, let me tell you with the same example that we have taken earlier.

So we have MUL instruction and this is the instruction count, that is, IC is 1 here. And

for this let us say the loop executes 4 times. So, in such cases depending on how many

number 4 multiplied 5 times with 5 or 4 multiplies 10 times. So, it depends on that now

IC is 1, but the number of cycles required to execute; that means, the micro operation

that you are using steps in each steps we are performing something that might be more.

So, CPI will be more. In this case may be IC is more, but overall it will take less number

of cycles. So, CPI will be less here, but IC will be more. So, this is a tradeoff we can see.

So far in one case, we can have more IC where the CPI will be less; in some case we

have less IC, but the CPI intern will be more.

(Refer Slide Time: 30:53)

Let us take an example. Suppose that a machine a executes a program with an average

CPI of 2.3; consider another machine B with the same instruction set and a better

compiler that execute the same program with 20% less instructions. And with the CPI of

1.7 at 1.2 GHz what should be the clock rate of A so that the two machines have the same

performance. So, for both the machines CPI is given. And one machine executes the

same program with 10% less instruction.

So one takes 100% and another takes 20% less; that means, 80%. So, for A ICA will

remain same; this is 2.3; and this is CA, that is what we have to find it out. Clock of A and

for this IC is 20% less. So, it will become 80%. So, 0.80 x IC x 1.7 x this is the clock rate

this is the period. So, the clock rate is 1.2 GHz, that is, 1.2 x 109; 1 divided by that will

give you the clock period of this. You will get a clock period of 0.49 x 10-9 second that is

coming to 2.04 GHz.

(Refer Slide Time: 32:35)

So we need 2.04 GHz clock for a machine such that both the result should be same. Let

us take another example where consider the earlier example with the instruction count of

50 million. Average CPI of 2.7 and clock rate of 2 GHz. Suppose we use a new compiler

on the same program for which new IC is 40 million and the new CPI has also increased

to 3. Also we have a faster CPU implementation with clock of clock rate of 2.4 GHz. So,

these are the different. So, one is having 2 GHz, this is having 2.4, but the CPI of this is

less CPI of this is more, but the instruction count of this is even more and this is less.

So if you compare this what will be the speedup? You have to find the execution time of

old one compared to execution time of new. So, you just put those values you get the

execution time old that is of this one. And you put all these values you get the execution

time of this one, which is coming down to 1.35. So, we can say that it is 35% faster.

(Refer Slide Time: 33:48)

Let us take another thing that is instruction types and CPI. Consider a program executing

on a processor with n types or classes of instructions. So, generally we do not have one

kind of instructions. We have load-store instruction; we have data transfer instruction

within the CPU; we have variety of instructions basically.

So these classes are divided into let us say load-store, ALU, branch, etc. So, IC i is

number of instructions of type i executed, CPIi is cycles per instruction of type i, the

following expression follows from this. So, till now we were saying that this is the total

IC, this is the total CPI now we divide it we say that there are various kinds of

instructions. So, we can have various kinds of instructions and each of these instructions

can have different CPIs. So, each instruction will have different CPI. So, CPU clock

cycles will be ICi x CPIi summation of that. Similarly, instruction count will be

considering all the instruction of all the types IC of type I, where i go from 1 to n.

So there are n type of instructions and what will be CPI now? CPI will be summation of

instruction count and cycles per instruction divided by instruction count total instruction

count. So, summation of ICi divided by IC into CPI.

(Refer Slide Time: 35:51)

Let us take one more example where we consider the implementation of an instruction

set architecture, where the instructions can be classified into four types. So, the CPI

values of these 4 types of instructions are 1, 2, 3 and 4 respectively. Two code sequences

have the following instruction counts; that means, there are 2 code sequence and these

are the various instruction count of type one instruction count of type 2 and so on.

So now you see the CPU cycles for CS-1: 20 x 1 because for type 1 the CPI is 1, type 2

multiplied by 2, 15 multiplied by 2, 5 multiplied by 3 and 2 multiplied by 4. So, this will

give you the total CPU cycles that is 73. So, what will be the cycles per instruction, total

instruction 20 + 15 + 5 + 2, which is coming down to 42 total instructions. So, CPI will

be CPU cycle divided by 42, which is coming down to 1.74. Similarly, for the next one, a

total CPU cycle is 80 and CPI is 2.22. So, we can see that it greatly depends on both the

type of instruction and what is the CPI of that type of instruction. So, both varies.

(Refer Slide Time: 37:40)

So this is instruction frequency and CPI, where CPI can be expressed in terms of

frequencies of various instruction types that are executed in a program. So, F i denotes the

frequency of execution of type i. So, Fi is ICi divided by total instruction count and CPI

we have already shown it in the previous slide can be expressed in terms of frequency.

So, we substitute this here. So, we get frequency multiplied by CPIi.

(Refer Slide Time: 38:15)

Now, let us take another example. Where suppose for an implementation of a RISC, ISA

there are 4 instruction types with their frequency of occurrence for typical mix of

programs let us say and CPI as shown in table below.

So this is the frequency at which load instruction is executed. This is the frequency at

which store instruction is executed and this is the frequency for ALU one branch. So, and

the CPI is given cycles per instruction this is the frequency at which it is happening. So,

what is the frequency that is 0.2 and the CPI is 4. So, if you want to find CPI, you can

find Fi multiplied by CPIi. So, 20 percent 0.20 multiplied by 4, 8 percent 0.08 multiplied

by 3 and so on. And we get 1.88.

(Refer Slide Time: 39:15)

Let us take another example suppose that a program is running on a machine with the

following instruction types. CPI values and frequency of occurrence the CPU designer

gives 2 options, the first option is to reduce the CPI instruction of type A to 1.1 %. So,

type A instruction we are reducing to 1.1 %. And reduce CPI instruction of type B to 1.5,

CPI of type B is reduced to 1.6. So, this is type A is reduced from 1.3 to 1.1 and type B is

reduced from 2.2 to 1.6. Now let us see.

So average CPI for a will be 60.60 %. So, 0.60 multiplied with 1.1 this is the new CPI

and all the rest CPI remains the same. So, we get 1.4448 similarly the CPI for B is 0.60

into no change here, but here we change to 1.6 this. 2.2 becomes 1.6 and this remains

same. So, we get this. So, from this what we clearly can say is that option A is better, but

you see what we have done option A is we have reduced from 1.3 to 1.1, but you see the

frequency of this instruction that is getting executed that is 60 %. So, it is much more.

So you must take into account the frequency. Some instructions that are frequently

getting executed and you reduce the CPU even less amount, but you are using that

particular instruction much more. So, in that case you will get a better result even if you

are reducing certain CPI to a great extent, but that is not executed more. So, you see that

type B is executing only the frequency of execution is 10%. So, in that case if you reduce

it to 1.6, also you are not getting a better result compared to when you are reducing A to

just 1.1. So, we came to the end of lecture 12 where we have seen that various things that

affect a CPU performance. And next we will see in some more detail in the next lecture.

