
Computer Architecture and Organization
Prof. Kamalika Datta

Department of Computer Science and Engineering
National Institute of Technology, Meghalaya

Lecture – 11
SPIM – A MIPS32 Simulator

Welcome to lecture 11. In this lecture I will be talking about SPIM; a MIPS32 simulator;

how you can write programs in SPIM.

(Refer Slide Time: 00:39)

As you all know the best way to learn any assembly language is through a simulator and

we should start coding. So, how to start that; we need a simulator which we will be using

(SPIM) that is a self contained simulator and it is available in public domain and you can

download that from this particular web page. SPIM implements almost the entire

MIPS32 instruction set along with the extension with pseudo instructions. What do you

mean by pseudo instructions? I already discussed about pseudo instructions like in MIPS.

 (Refer Slide Time: 02:09)

SPIM has both terminal based and window based interfaces which are available; it is up

to you that which you will be using. SPIM is copyrighted by James Larus and distributed

under a BSD license. So, we must know what SPIM can do --- it can read and execute

assembly language programs for MIPS32 and provide a simple debugger and also

provide minimal set of OS services via system calls. This is a screen shot of a QTSPIM.

(Refer Slide Time: 03:09)

So, if you install QtSPIM in your machine, you will be able to see a view like this. Here

these are the registers that are having different values, and these are the hexadecimal

addresses, and this is the instruction after encoding.

So, these are the list of instructions and this is the encoded form of the instructions. We

have already learnt how we can encode a particular instruction knowing how many bits

of registers are present, etc. So, this is basically the main instructions that are getting

executed, this is the encoded form of the instructions, and this is the memory addresses

and you can see the memory addresses will be incremented by 4, as we have 32-bit

instructions. It is byte addressable, and so it will be added plus 4.

(Refer Slide Time: 04:25)

Now, let us see the MIPS32 assembly code layout; it has got a text section, it has got a

data section. In this section we have something called globl main. This actually shows

the starting point that must be global, and now this is .global main, and main is the label

from where your program execution starts. If you do not give this in the program it will

be wrong. So, you have to mention that your main is global, and this starts from a

particular level (that is main) and then you can write the user program code here.

(Refer Slide Time: 05:32)

And the data portion is written in this part. These are some assembler directives --- .text

specifies the user text segment which contains the instructions that are required to

execute. We will see some examples in course of time. Then, .data specifies the data

segment where we put all the data that will be used in our program. Then .globl sym

specifies the starting point, but this symbol is global and can be referred from other files

as well. So, from many other files you will be able to access this.

Next is .word --- it stores the specified 32-bit numbers in successive memory words.

(Refer Slide Time: 06:51)

Let us say hexadecimal address starts from 0 0 0 0 0 0 0; your next address will be 0 0 0

0 0 0 4, and so on. So, it is increasing as plus 4 plus 4 and so on.

(Refer Slide Time: 08:00)

.byte stores a 8-bit specified number in successive memory bytes. We can also specify

characters. So, .ascii and .asciiz are the two directives that are used to store the specified

string in memory, but do not null terminate it. So, it is not null terminated --- a string is

null terminated by “\0”. .asciiz str specifies a string in memory and it is also null

terminated.

.space n reserves a space for n successive bytes of memory.

(Refer Slide Time: 09:09)

For register naming convention we already discussed about all these things, and this is

how it is named: $zero, $at, $v0, $v1, $a0 to $a3, $t0 to $t9, $s0 to $s7, $gp, $sp and $ra.

(Refer Slide Time: 09:26)

As you know MIPS pseudo instructions as discussed earlier are all supported by SPIM.

SPIM converts these into MIPS32 instructions before executing them. So, we can write a

program using pseudo instruction, but this pseudo instruction in turn gets converted into

MIPS32 instruction before it gets executed.

(Refer Slide Time: 10:00)

For operating system interface syscall is used, like when you want to get a value from

keyboard, display in the monitor, etc. In such cases you need to use syscall. So, if you

want to print an integer you have to put the argument in $a0 and you have to put the code

$v0 = 1 to print an integer. Similarly for printing a string you need to put the code 4 in

$v0 and the address of the string in $a0. And then you perform a syscall then it will print

that mean on the screen this value will get displayed, either integer or a string. Similarly

we reading an integer it will read from the keyboard and store it in $v0.

Similarly, for read string the code is 8, and in $a0 the address of the buffer where you

want to read it that will be given and how much length string you want to read that is

given in $a1. Also the code for exit is 10 and after putting the required value in these

registers you have to do syscall. Other system calls for floating point numbers also exists

which is not included here. Let us take a sample program.

(Refer Slide Time: 12:46)

Let us see how this program is executed. So, in the .text we write .globl main and main is

the label from where the execution of program starts. So, what this program is actually

doing let us also look into the value; value is also a label which consists of some word

and each word is of 32 bit and what it stores in the first location; it stores 50 and in the

next location it stores 30, and the result will be stored in next location which is initialized

with 0.

Now, just see this --- la meaning load address from value and store it in $t0. $t0 is a

temporary register where we are loading this value. Once we load the address of this

value in $t0 we need to load the word 50 and 30. So, let us take an example to show this.

(Refer Slide Time: 14:27)

Now, you see these are my memory location 4A1B03C8 --- in this memory location we

have stored 50, in the next memory location we have stored 30 depending on the value,

and in this location we have stored 0. The various steps are shown.

(Refer Slide Time: 18:42)

Now, this is a program that adds two constant numbers specified as immediate data and

store the result in a register. So, here we are adding some immediate values 0x2A and

0x0D. What we are doing we are adding this immediate value with $zero and then we are

storing it in $t1; why because we do not have a move instruction. So, instead we are

doing directly this here and then we are again loading this particular data into $t2 and

then we are adding these two and storing it in register $s3. So, these 3 steps will add two

immediate value that is 0x2A and 0x0D into $s3.

(Refer Slide Time: 19:46)

Coming to the next program that is the same program, but using a system call. In this

system call if you recall if we load 10 in $v0 and then we do a syscall then it will exit.

So, this particular program is same as the previous one that is adding two immediate

values, but at the end we have to load an immediate number into $v0. So, in $v0 value 10

will be loaded and once we do system call then it will get exit. So, it will exit from here.

(Refer Slide Time: 20:31)

Now, let us see a program. Here we read 2 numbers from the keyboard and print the sum.

So, first of all we have to read 2 numbers. So, initially in the data section we initialize the

three strings, now see all these numbers are entered from the keyboard. So, in the data

section this str1 specifies “Enter the first number:”, str2 specifies “Enter the second

number:”, and str3 specifies “The sum is =”.

So, first we have to display this “Enter the first number:” and then once it is displayed

we need to read a value from the keyboard, let us see how we can do this. The process is

repeated for the other number also.

(Refer Slide Time: 24:29)

So, this is a program that reads 2 integers from the keyboard perform addition and store

back the result in another and displays the result in the keyboard itself.

(Refer Slide Time: 26:35)

Now, let us see how we can do some other programs like adding 10 numbers. So, till

now we are talking about simple program loading a value adding those values storing it

back, but loops and other things are very common in programming. So, we often

encounter loops everywhere whenever we write a program how loops will be executed

using this SPIM how we can write loops using SPIM we will be seeing in now. So, we

will see how we can calculate sum of 10 numbers and the 10 numbers are stored in

consecutive memory locations, and these 10 numbers are will be added and stores back

in another memory location. So, we need to have one counter that will start from here if

it starts from 0 it will go till 9; 0 1 2 3 4 5 6 7 8 9. So, less than 10 if you start from 1 it

will be less than equal to 10.

 (Refer Slide Time: 32:25)

The next example is another program which checks if a given number is palindrome or

not. So, what is a palindrome? A palindrome is a number if you reverse the number it

will be the same.

(Refer Slide Time: 32:41)

So, if you have a number 2 1 2 if you reverse the number it will be first 2 will come, then

1 will come, then 2 will come. So, both the numbers are same. Now let us have a number

1 2 3 is this palindrome number? You reverse the number 3 2 and 1 this is not a

palindrome number because this is not same as this.

Let us take an example 1 2 3; basically what we need to do we need to extract the last

digit. So, we need to multiply it with 10 and add it with the extracted digit and we store it

whatever we get again we multiply with 10 and add it with the last digit that is the

remainder.

(Refer Slide Time: 34:18)

So firstly, let me explain the concept if we consider a number 1 2 3, we take the

remainder of the number. So, the remainder will be 3. So, we have extracted the last

digit. So, 123 mod 10 we get 3 which is the remainder. So, initially you have you have to

take a counter that is 0. So, we multiply 0 with 10 and we add with the remainder. So, we

get 3 here. So, we are this is the 0th one. So, initially the counter was 0 it has multiplied

with 10 and added with 3 now my counter is 3 and what I do again we need to get the

quotient. So, 123 divided by 10 we get 12 as the quotient.

Now, we take this 12 again we take the remainder we get 2; once you get the remainder

as 2 the previous counter value was 3 we multiply 3 with 10 and we add it with 2 we get

32 now my counter has changed to 32; now how many times you will be doing it till you

get a 0 quotient. So, again for the next time the quotient is 1. So, 1 mod 10 it becomes

one initial counter was 32 then we have to do 32 into 10 and I added one I add with one

and we get 3 2 1, now 1 divided by 10 which is 0. So, we will not continue. So, we got

the value which is the reverse of this 1 2 3. So, initially we have taken 1 2 3, we repeated

certain steps we kept a counter in that counter we were storing the reverse value and

finally, we got the value 3 2 1. So, 1 2 3 the reverse is 3 2 1, but now this is not equal to

this. So, it is not a palindrome.

Let us see how we can code this using QTSPIM. So, here similarly we have to enter a

number and this should be two messages; if it is a palindrome it should display

palindrome, if it is not palindrome it will display not palindrome.

(Refer Slide Time: 37:18)

Now first of all this message “Enter the number:” should come. So, we load 4 in $v0 and

the message in $a0 and do a syscall then we enter the number. So, we load 5 in $v0 we

do a syscall the value the number in entered is stored in $v0 which is moved to $t0 we

also move the value $t0 to $t3. So, $t3 and $t0 both contains my number for which I

have to check whether it is palindrome or not; now I am loading an immediate value $t2,

where in $t2 I am initializing it with 0. So, the same process that I have explained I am

doing it in a loop. So, what I am doing initially the counter value is 0. So, 0 is multiplied

with 10 and it is stored in $t2; then my number is in $t0 the number for which have to

calculate the palindrome is in $t0, I divide it with 10 and I get the remainder in $t1. So,

my remainder is now in $t1, I divide it $t0 by 10, I get the quotient in $t0. So, $t1

contains the remainder and $t0 contains the quotient.

Now, I am adding the counter $t1 with the counter value that is $t2 and I am storing back

in $t2, next what I am checking whether $t0 is equals to 0 or not; that means, my

quotient has become 0 or not; if my quotient has become 0 then I will not loop it. So,

branch if not equal if $t0 is not equal to 0; again you go to the loop. Now you are taking

the updated value of $t2 which is depending on the last digit; that last digit is multiplied

by 10 and stored in $t2 again similarly for that value $t1 again it for that value $t0 we

will be dividing it with 10 we get the reminder we divide with 10 we get the quotient and

we again add it.

So, we keep on doing this until we get this $t0 is 0; that means, until the quotient become

0. Once the quotient becomes 0, we check the next thing what we are checking see in the

first step we have also stored the number in $t3 why we have stored the number and $t3

because we have to finally check because the number is palindrome or not; we first

reverse that number and now I am checking whether the number is palindrome or not.

So, $t3 is checked with $t2 that is the counter that I have kept if it is not equal then you

go to a label np that is not palindrome and where you load this message that this

particular number is not palindrome, but if it is not equal then only we are going in let us

see if it is equal then this statement will not get executed and we will directly come to

this statement where we will display the message the number is palindrome. So, just see

what we have done and then we exit it. So, we have put one exit here one exit here why

because if it is not palindrome it will come here and then, the exist code it will encounter

here, but if it is palindrome then it will go here and then it will also exist with this

particular code.

(Refer Slide Time: 41:49)

So, this code actually shows whether a number is palindrome or not. So, we have written

an assembly language code which shows a number is palindrome or not. So, these are

function calls in MIPS it uses jump and link instruction; we call it jal instruction and

what it does it jumps to a label and it stores the PC value in the return address register

$31. And once the control after the subroutine is executed it has to return back to that

particular place. So, returning back to that place it has to do jr to return automatically to

that particular address; it will load the previous value of pc which was stored and it will

go on executing it.

(Refer Slide Time: 42:34)

So, this is a simple example of function call. So, 2 numbers are store in these 2 locations.

So, we load these 2 numbers here load word from num1 and num2 in these 2 registers

$t0 and $t1 and then we are doing a jal, where we are going to SumFunc. In SumFunc

we are adding $t1 and $t0 and storing in $t1 and what we are writing here after this

execution of this we are writing jump to return address that is $ra. So, it will load that

address and it will come here because the pc value initially when you are accessed this

pc value, then the pc value was incremented to the next one which was pointing to “sw

$t1,sum” --- but now you have executed a jal instruction where it has it has moved here it

will execute this particular instruction and then it will jump to return address and it will

get the return address from register 31 which is $ra and it will execute this statement now

starting from this statement.

Now, the pc value will be loaded with this again after the execution of jr $ra and then

these 2 instructions will get executed. So, this is how function call happens in MIPS. So,

now, we have come to end of module 2. In module 2 we have seen generally what is the

kind of instruction format, addressing modes that are there, and then specifically we have

gone into the details of MIPS32 instruction set and we have discussed about a simulator

that is SPIM where we can write programs in assembly language.

Thank you.

