Internetwork Security
Prof. Sourav Mukhopadhyay
Department of Mathematics
Indian Institute of Technology, Kharagpur

Lecture - 51
Cryptonalysis and Stream Cipher

(Refer Slide Time: 00:36)

So, we talk about cryptanalysis on stream cipher at around stream cipher, specially we
will talk about algebraic at around stream cipher. So, let us just recap what is a stream
cipher. We have seen the LFSR stream cipher; basically in stream cipher, we have a key
stream generator, this is basically a pseudo random bit generator because the bit it is. So,
this is basically taking initialized by the initial key, so the key secret key k which is
shared between Alice and Bob. So, you have two party Alice and Bob. So, they have a

common so this is symmetric k encryption, they have a common key k which is some bit.

Now, if it is LFSR based stream cipher then basically what we have we have a LFSR say
for example, if we have four bit LFSR, and this is four bit, and we have some
connections over so depending on the polynomial we have some connections. And this is
the state transition met this is the way it change the state. So, we have a feedback from
this bit, and this bit and this bit and so. So, if k is four bit, so k 0, k 1 or the other way
round, so k 3, k 4, k 2, k 1, k 0. So, we initialize this state by this way and we run the
LFSR. So, it will keep on generating the k O for first come out then it will be k 1, k 2, k 3

then it will be XOR with this k 1 XOR k 2 XOR k 1 like this so then k 1. So, like this.
So, this is the key stream. And this key stream we are going to XOR with the plaintext
bit p 0, p 1 like this and we got the ¢ 0, ¢ 1 like this and this ¢ 0, ¢ 1 is going to Bob. So,

this is the encryption.

Now, how Bob will decrypt it? So, Bob is having the same LFSR that is same bit
generator; and Bob is having the same key, which is the secret key shared between Alice
and Bob. So, Bob will just initialize the state by this key and it is the same LFSR. So,
this is one example. So, Bob will generate the same key stream bit k 0, k 1 like this and
Bob will XOR this with the ¢ 0. So, Bob is receiving ¢ 0, ¢ 1, and Bob will get the ¢ 0.
So, k 1 XOR with the ¢ 1, so Bob is getting the plaintext bit. So, this is the decryption
which is doing by Bob and this is the encryption which is done by Alice.

Now, we have to think of what Oscar can do. So, now, if Oscar knows some knows some
plaintext and ciphertext bit, this is (Refer Time: 03:56) known plaintext set up. If Oscar
knows some plaintext and ciphertext, now this cipher text is basically the linear function

of the plaintext and the key.

(Refer Slide Time: 04:21)

So, basically what we have, so we have a Z t which this is basically function of k, k is the
secret key. So, Z t is the function of secret key, and it is basically what we are doing we
are getting the C t as Z p XOR with P t. Now, Z p is the t-th key from the keystream and
this is the t-th ciphertext bit and this is the t-th plaintext bit. Now Z t is basically C t

XOR with P t. Now, Z t is basically function of f function of k, Kk is the secret key shared
between Alice and Bob. So, that is the initial source we are loading the secret key and

then we are running the key stream generator. So, this is basically C t of this.

Now, if this function is a linear function then basically we have some system of equation
linear equation, then we can solve this to get the this key once we get the k, then
everything is gone, because k is the secret shared between Alice and Bob, so that is the
attack on LFSR simple LFSR based stream cipher. So, to avoid that, you need to put
some non-linear functions in the LFSR baser stream cipher.

(Refer Slide Time: 06:25)

So, some non-linear key we need to introduce, so that is why we say L LFSR, L 1, L 2
like this, so n many LFSR. And these we are parsing function f non-linear function. So,
this is our dot dot dot, this is our key stream, this is our key stream. So, what we are
doing. So, this LFSR is having the same length. So, this is Alice is doing. So, this is the
encryption Alice is doing. So, what Alice is doing? Alice and Bob they have shared with
a common key. So, they are loading this secret key in each of this LFSR and they are
running this, and they are getting some output foundation let us say thisis x 1, x 2, x 3
like sorry x n like this. So, this is basically a function of x 1, x 2 this is a Boolean
function. So, it is basically a function f is a function of 0, 1 to the power n to 0, 1. So,

this is a Boolean function.

We can realize this function in algebraic form or we can have a truth table for this
function. So, we can have a truth table like say we have these values x 1, x 2, X n and we
have this value z. So, this is the z the keys stream. So, we can have all possible
combination of these 0 0 0 1. So, we can have the output. So, we can expressively have
the truth table for this function to represent or we could have algebraic form, like we can
have this function to be say x 1 x 2 XOR with x 2 x 3 x 4 like this. Now we call this
function to be balanced if the number of zeros and number of ones are same then we call
this function to be balanced function. And this function you want to be non-linear
function, because these are the non-linear terms and this will make our cipher to be
secure in the terms of the algebraic data, because we are not able to find the linear

equation out of this.

So, we will see how we can try to get a linear equation by linearization of this term, so
that we will see. So, this is the general form of non-linear, this is non-linear function
which is taking the input from the linear LFSR, and it is generating the output. Now, this
is the key stream, we are getting and this key stream we XOR with the plaintext bit to get
the cipher text bit. So, this is the encryption. So, decryption Bob is doing the same thing
Bob is having this structure. So, what Bob will do? So, Bob will just put the same secret
key shared between Alice and Bob; and then Bob will run this key stream and Bob will
extort this key stream with the key stream bit with the cipher text bit, and Bob will
receive the plaintext bit. So, this is the general structure of a LFSR bit.

(Refer Slide Time: 10:14)

But any stream cipher, so for any general stream, this is synchronized stream cipher. So,
any stream cipher, what we have we have a key stream generator or this is called pseudo
random number generator. Why pseudo, we know why pseudo because it is cannot give
a truly random sequence, so that is why it is a basically it is a finite state machine. So,
this is taking input as, we initialize this state as this state we denote by S t, and we
initialize this by the secret key k shared between Alice and Bob - S 0. So, these states are
initialized by the secret key shared between Alice and Bob. And then we have a state
update function g which is taking the current state g of S t and which is generating the

next state if S 0 is the K. So, this is the state updating function.

For LFSR it is the feedback function. So, we extort those bits which are participating in
the feedbacks and then we are taking the feedback in the last bit and then we have
another function which is taking the current state and apply a function h. So, this is
giving us the key stream. So, h of S t is basically Z t. So, the key stream bit of the t-th
key stream and then we extort this key stream with the plaintext bit P t, and we generate
the ciphertext C t. So, this is the general structure of a synchronized stream cipher
because here we are not involving the plaintext in this updation function or in this key
stream generation that is why it is called synchronized. In the asynchronized will see will
see in the next lecture some modern stream cipher. So, there we will see there are some
asynchronized stream cipher, where the plaintext is also involved also participating in
this is the function of the plaintext also, but here we are taking just a synchronized

stream cipher.

(Refer Slide Time: 13:03)

So, can you go to the slide please? So, this is the general structure of a stream cipher we
have a secret key and we have a key stream generator and we are generating this key
stream generator to get the key stream. And this is the plaintext, plaintext bitp O, p 1, pn
and then we are expiring with the c i key stream bit and getting the ciphertext bit. So, this
is the encryption what Alice is doing. And after receiving this ciphertext bit, Bob is just
having the same structure same stream cipher and Bob is generating the key stream bit
again by taking the initial value of the state as the secret key and Bob is decrypting and
getting the plaintext back.

(Refer Slide Time: 13:50)

So, this is we have seen if it is LFSR based stream cipher, we have n LFSR which is

taking the input to the non-linear function f, and we are generating the key stream.

(Refer Slide Time: 14:05)

* 50 the expression of the koystream bt at r-th clocking will be fis'y

So, this is the structure. So, we denote this Z p as f of S t. So, S t is the state. So, state
updation function. So, in our example it was h. So, basically g, so this is basically f we
are denoting. So, Z t is basically sorry this is s. So, this is the key stream generator. So,
we have taken this f, we have taken this state and we apply this f on it and we will get the

key stream.

(Refer Slide Time: 14:42)

Congider one LFSH based stream ciphas
* The S loadbaok lunction of the the LISH »
» Firally, we milialze the stato of the LFSR by one seciel key A 1o
M, \ I, whore, Mo seciol key DS e donoted) by
and the state bits are donoled by
» Histe update funobon
|] ' | |
| ‘

s Koyatreawm b

So, now this f is for a LFSR based stream cipher, we know this f is basically updating the
function and this LFSR has this updation function. So, for all the bits, it is shifting the
one position except the last bit - nth bit. So, nth bit is basically linear feedback of this bit

depending on the polynomial which we are going to use for that.

(Refer Slide Time: 15:20)

So, this is basically and the S t is basically, so we take a state so basically what we have
we have this is S t this is the finite state machine. So, it could be LFSR or it could be
collection of LFSR, then we have f it could be anything. So, basically we have finite
state machine and this machine this is the state at time t, so this is our S t. Now, it is
applying a function f and this is giving us Z t. So, Z t is basically f of S t. So, this is the
way we think that.

(Refer Slide Time: 16:12)

Exprosaing the whobs oryptosystom o8 a large systom of maliva iade

algebtraic eguabions which can be sohed 30 recover the seciet key

ANQOBIMG ALK 15 DAsed ON WO DANG SHMOges

s Conatruct o system of algedraic oquaions Involving the secrof oy 1ming

some known phanioxt bils and corresponding cpheriatat its

*» Holve 1he systom 10 Tind the secrot kiy

So, then for algebraic attack what we need to do we need to write this Z p in terms of this
f in terms of algebraic equation. So, expressing the whole cryptosystem as a large system
of multivariate algebraic equations, which can be solved to recover the secret key, so
algebraic attack based on two basic strategies; they are basically we construct a system
of algebraic equations involving the secret key using some known plaintext and
ciphertext because this is a known plaintext attack. We know some plaintext bits and
ciphertext bits. So, basically what we are doing this is the t. So, our ciphertext bit is
basically t-th ciphertext is basically p t XOR with Z t. So, now if you know this
ciphertext, if you know this ¢ t and p t for some p, so this is a known plaintext attack. So,

if you know this then what we basically will do? We then, Z t is basically ct XOR p t.

(Refer Slide Time: 17:42)

So, now, this is known, if this is some value, then what we have, we have basically some
functions like. So, we know this Z t is basically f of S t is basically some ¢ t XOR p t,
now this value is known for some t. Now, from where we basically have a system of
equation then we try to solve this system of equation. So, this is the construct the system
of algebraic equations involving the secret key, because f 0 is the secret key, s 0 which is

state is neutralized by the secret key.

(Refer Slide Time: 18:27)

Ganerating the malivariade equalions

K> K

| Wy s goneraien Rysbrenin guiwiabor |
- |
£ b

Alice Py == i o, - Oy = 0 Hob
' '

So, this is the attack model of algebraic attack. So, here what we are doing, we have a
key stream generator which is basically the finite state machine, which is a pseudo
random bit generator it is a finite state machine. So, it is initialized by the state is
initialized by the secret key shared between the Alice and Bob. And it is generating the
key stream serially and then this key stream is XOR with the plaintext bit and generates
the ciphertext bits, and send it to the Bob over the public channel. Now, after receiving
the ciphertext Bob is doing the decryption like this. Bob is again generating the key
stream, because Bob is also having the same pseudo random bit generator and Bob is
putting the secret key as a initial state, and Bob is running the same thing and then Bob is

extorting with the ciphertext with the this key stream bit and getting the plaintext back.

Now, what Alice is doing? So, Alice is receiving this ciphertext, now suppose Alice is
having this ciphertext bit and few ciphertext bit and the corresponding plaintext bit. So,
this is the known plaintext attack; then basically the attacker is having this system of

equation.

(Refer Slide Time: 19:52)

AQELIRC nitnck

50, I attacker knows « plartoxt bits and corresponding cphartoxt bes then

B CAN CONBrct the ToHowiIng system of eoninnons
f I
fil I
fil /
fil
whai
. N Soare! hey
L | Stale updale lunction of the LFSH
./ NOMAron Mo Rnchon usad i 1he oipher
Koyutroam bit s -th clocking

So, basically if the attacker knows plaintext bit, and the corresponding ciphertext bit,
then he can construct the following system of equations. So, this basically this is a LFSR
based stream cipher because these are the LFSR bit updates. So, every state is initializing
by k 0. So, this is basically say for example, for if you know the first k plaintext on the

corresponding cipher text.

(Refer Slide Time: 20:36)

Then what we have, we have this Z of k 1 which is basically f of L of k 1 k 0, this k 0 is
the secret key shared between Alice and Bob or this is the private key shared between
Alice and Bob. Because this is coming from that, because we know that p 1 XOR with ¢
1, it is basically z all like this. So, similarly we have s 2 which is basically f of L k 2, so
like this. So, these are all state updated functions for LFSR, but it could be general
stream cipher. So, this way we have n many this key streams which is corresponding to k
0. So, these are all function in k 0. So, this is a system of equation, where this k zero is
the secret key and L is the state update function for the LFSR this L, and f is the non-
linear filter function used in the stream cipher, and s t is the key stream bit in the t-th
clock. That means, t-th key stream, but it could be other than LFSR also it could be

general stream cipher then we have a finite state machine and it is updating.

(Refer Slide Time: 22:14)

» Noxt torpet s sove the wysiem
o Question. How can wo solve 1he syslem?”
o A Thore o s0mo a\orithens 10 find the sohumon this type of systom

0.0, Unoarizatan, He linsarization, XL algonthim

So, what next, so our next as so we got some system of equation. So, our next target
would be to solve this system of equations, because this system may not be a linear
system. If it is a linear system you could directly use the Gauss elimination method or
some matrix method to solve it, but this system may not be always linear system. So, we
will try to make this system to be linear system, so that is the method called linearization.
So, we will talk about that. So, the question is how we can how can we solve this system.
So, there are some algorithms to find the solution for this type of system one is
linearization we will talk about that, then re-linearization, then XL algorithm to solve this

system of equation.

(Refer Slide Time: 23:10)

Lineanzation

s The basic iden of this algotithm m 50 linsarze the tolal systen by
MINOAUOING Nnow variabies i the system of aguations and finally solve by
Gouss olimination methaod

» The mamum namber of moncmials oan ba prosent i o systam of
oquAtons with o vanablos of degreo maxenum b

5O, 30 neaize 00 system of sguations of « vanabdos ol degroe
maxenum « we neod masdmum 5) numbes ol new varablos %0

rowvize the tmal aysternr

So, what is the linearization, basic idea of linearization is to this linearization is the total
system by introducing new variables in the system of equations and finally, solve. So,
this system may not be a linear system. So, we will just introduce some new variable in
this system to make it linear system. We will say if we have a variable say x 1, x 2, this
is not a linear, but you can put this as y 1, so that way we will solve this. Now, once we
have a solution, once we solve this in terms of y 1 then we will try to get the solution for

x 1 and x 2. So, this is called linearization.

So, the then the maximum number of monomials can be present in the system of
equations of n variables of degree d is must be less than equal to summation of i is equal
to 1 to d nto i. So, to linearize one system of equations of n variables of degree
maximum d, we need maximum this many number of new variables in the final system.
So, this numbers should have controlled because otherwise it will be a huge system then

we may not get the solution, so that is also one important thing.

(Refer Slide Time: 24:32)

Agulralo nitnck

Linearization

o Final nystonm will have unkopie sokition i Ihe rmoumier of inckesendant
oquaton s same an the number of virlables prosent in the linal systom

o DA 0 mary onses it sy ot hagpen

THON we 0eod) 10 Think 5r gonornitag some sxtin lnearly Sapondont

ountions

So, then final system will have unique solution if the number of independent equation is
same as the number of variables present in the final system, so that matrix has to be
invertible, but in many cases it is not happening. Then we need to think of generating

some extra linearly independent equations.

(Refer Slide Time: 24:56)

Re linearzaton

» W hnow thal muttpdoaton of 1he viviobdes In 6 COmMmutalive onoraion
0 this 1e-lingarzation method wo use this comimutmyily propsrty 1o
QN Ale MO SQuUaLIoNs

o CONMRT ONe oxampla, supnose w Rive 1his manomial i. Now
WO AN Tewrile 1e Monomual i AMerent wiys

» Weo renarne ooch 1orm ne difforon! varialdes say, »

» AN suDSERIING Koo Now variabies wo will 0ot wo new linoarly
ndependent egualions Wi Myavas A waarns

So, suppose we have this example. So, we need to do the re-linearization. So, how we
could do that? So, we know that the multiplication of the variables in a commutative

operation in this re-linearization method we use with the commutative property to

generate the more equations. So, we have to generate the more equation, because of our
system of equation what we are getting is not invertible | mean it is not giving the unique
solutions. So, consider for example, suppose we have a monomial this terms this non-
linear x 1, x 2, x 3, X 4. Now, we can rewrite this monomial in a different way like x 1 x
2thenx2x3x4thenx1x3andx2x4orx1x4x2x 3. Then we rename each of

these different variable as y 1 i because there are, so thisisy 1 2 thisisy 1 3.

(Refer Slide Time: 26:09)

So, like if you have this term say x 1, X 2, X 3, X 4. So, this can be written as x 1 x 2.
Now, we can put these or this is same as X 1, x 3, X 2, x 4 or thisis same as X 1, X 4, X 2,
x 3. So, now these we are denoting by y i j, y i j means X i X j. So, we have many choices.
So, we can have corresponding equation. So, we rename this each of these different
variable as y i j is; after substituting this new variable, we will get some new linear

depend independent equations of this forms.

(Refer Slide Time: 27:00)

AQelirnio niinck

Ho linoarnzatvn

* 11 has Boon obsorved thal mary eguatons ganerated by re-bneaizaton
plgonthim arme inearly ndependen!

50 we need 50 think again 1o genermie axtra linearly ndependent expantions

So, then it has been observed that many equations generated by re-linearization
algorithm are linearly independent. So, once we got the linearly independent equations
then we solve this then we have system is consistent then we can get a solution of this
system and we can get the corresponding secret key. So, this is called algebraic attack.
We basically generate some equations then we try to solve this equation by some of the
method like linearization, XL method, Gauss, so once we get the system of equation,

which is consistent then you apply the Gauss elimination method to solve this.

Thank you.

