
 

 

Internetwork Security 

Prof. Sourav Mukhopadhyay 

Department of Mathematics 

Indian Institute of Technology, Kharagpur 

 

Lecture - 51 

Cryptonalysis and Stream Cipher 

 

(Refer Slide Time: 00:36) 

 

So, we talk about cryptanalysis on stream cipher at around stream cipher, specially we 

will talk about algebraic at around stream cipher. So, let us just recap what is a stream 

cipher. We have seen the LFSR stream cipher; basically in stream cipher, we have a key 

stream generator, this is basically a pseudo random bit generator because the bit it is. So, 

this is basically taking initialized by the initial key, so the key secret key k which is 

shared between Alice and Bob. So, you have two party Alice and Bob. So, they have a 

common so this is symmetric k encryption, they have a common key k which is some bit. 

Now, if it is LFSR based stream cipher then basically what we have we have a LFSR say 

for example, if we have four bit LFSR, and this is four bit, and we have some 

connections over so depending on the polynomial we have some connections. And this is 

the state transition met this is the way it change the state. So, we have a feedback from 

this bit, and this bit and this bit and so. So, if k is four bit, so k 0, k 1 or the other way 

round, so k 3, k 4, k 2, k 1, k 0. So, we initialize this state by this way and we run the 

LFSR. So, it will keep on generating the k 0 for first come out then it will be k 1, k 2, k 3 



 

 

then it will be XOR with this k 1 XOR k 2 XOR k 1 like this so then k 1. So, like this. 

So, this is the key stream. And this key stream we are going to XOR with the plaintext 

bit p 0, p 1 like this and we got the c 0, c 1 like this and this c 0, c 1 is going to Bob. So, 

this is the encryption. 

Now, how Bob will decrypt it? So, Bob is having the same LFSR that is same bit 

generator; and Bob is having the same key, which is the secret key shared between Alice 

and Bob. So, Bob will just initialize the state by this key and it is the same LFSR. So, 

this is one example. So, Bob will generate the same key stream bit k 0, k 1 like this and 

Bob will XOR this with the c 0. So, Bob is receiving c 0, c 1, and Bob will get the c 0. 

So, k 1 XOR with the c 1, so Bob is getting the plaintext bit. So, this is the decryption 

which is doing by Bob and this is the encryption which is done by Alice. 

Now, we have to think of what Oscar can do. So, now, if Oscar knows some knows some 

plaintext and ciphertext bit, this is (Refer Time: 03:56) known plaintext set up. If Oscar 

knows some plaintext and ciphertext, now this cipher text is basically the linear function 

of the plaintext and the key. 

(Refer Slide Time: 04:21) 

 

So, basically what we have, so we have a Z t which this is basically function of k, k is the 

secret key. So, Z t is the function of secret key, and it is basically what we are doing we 

are getting the C t as Z p XOR with P t. Now, Z p is the t-th key from the keystream and 

this is the t-th ciphertext bit and this is the t-th plaintext bit. Now Z t is basically C t 



 

 

XOR with P t. Now, Z t is basically function of f function of k, k is the secret key shared 

between Alice and Bob. So, that is the initial source we are loading the secret key and 

then we are running the key stream generator. So, this is basically C t of this. 

Now, if this function is a linear function then basically we have some system of equation 

linear equation, then we can solve this to get the this key once we get the k, then 

everything is gone, because k is the secret shared between Alice and Bob, so that is the 

attack on LFSR simple LFSR based stream cipher. So, to avoid that, you need to put 

some non-linear functions in the LFSR baser stream cipher. 

(Refer Slide Time: 06:25) 

. 

So, some non-linear key we need to introduce, so that is why we say L LFSR, L 1, L 2 

like this, so n many LFSR. And these we are parsing function f non-linear function. So, 

this is our dot dot dot, this is our key stream, this is our key stream. So, what we are 

doing. So, this LFSR is having the same length. So, this is Alice is doing. So, this is the 

encryption Alice is doing. So, what Alice is doing? Alice and Bob they have shared with 

a common key. So, they are loading this secret key in each of this LFSR and they are 

running this, and they are getting some output foundation let us say this is x 1, x 2, x 3 

like sorry x n like this. So, this is basically a function of x 1, x 2 this is a Boolean 

function. So, it is basically a function f is a function of 0, 1 to the power n to 0, 1. So, 

this is a Boolean function. 



 

 

We can realize this function in algebraic form or we can have a truth table for this 

function. So, we can have a truth table like say we have these values x 1, x 2, x n and we 

have this value z. So, this is the z the keys stream. So, we can have all possible 

combination of these 0 0 0 1. So, we can have the output. So, we can expressively have 

the truth table for this function to represent or we could have algebraic form, like we can 

have this function to be say x 1 x 2 XOR with x 2 x 3 x 4 like this. Now we call this 

function to be balanced if the number of zeros and number of ones are same then we call 

this function to be balanced function. And this function you want to be non-linear 

function, because these are the non-linear terms and this will make our cipher to be 

secure in the terms of the algebraic data, because we are not able to find the linear 

equation out of this. 

So, we will see how we can try to get a linear equation by linearization of this term, so 

that we will see. So, this is the general form of non-linear, this is non-linear function 

which is taking the input from the linear LFSR, and it is generating the output. Now, this 

is the key stream, we are getting and this key stream we XOR with the plaintext bit to get 

the cipher text bit. So, this is the encryption. So, decryption Bob is doing the same thing 

Bob is having this structure. So, what Bob will do? So, Bob will just put the same secret 

key shared between Alice and Bob; and then Bob will run this key stream and Bob will 

extort this key stream with the key stream bit with the cipher text bit, and Bob will 

receive the plaintext bit. So, this is the general structure of a LFSR bit. 

(Refer Slide Time: 10:14) 

 



 

 

But any stream cipher, so for any general stream, this is synchronized stream cipher. So, 

any stream cipher, what we have we have a key stream generator or this is called pseudo 

random number generator. Why pseudo, we know why pseudo because it is cannot give 

a truly random sequence, so that is why it is a basically it is a finite state machine. So, 

this is taking input as, we initialize this state as this state we denote by S t, and we 

initialize this by the secret key k shared between Alice and Bob - S 0. So, these states are 

initialized by the secret key shared between Alice and Bob. And then we have a state 

update function g which is taking the current state g of S t and which is generating the 

next state if S 0 is the K. So, this is the state updating function. 

For LFSR it is the feedback function. So, we extort those bits which are participating in 

the feedbacks and then we are taking the feedback in the last bit and then we have 

another function which is taking the current state and apply a function h. So, this is 

giving us the key stream. So, h of S t is basically Z t. So, the key stream bit of the t-th 

key stream and then we extort this key stream with the plaintext bit P t, and we generate 

the ciphertext C t. So, this is the general structure of a synchronized stream cipher 

because here we are not involving the plaintext in this updation function or in this key 

stream generation that is why it is called synchronized. In the asynchronized will see will 

see in the next lecture some modern stream cipher. So, there we will see there are some 

asynchronized stream cipher, where the plaintext is also involved also participating in 

this is the function of the plaintext also, but here we are taking just a synchronized 

stream cipher. 



 

 

(Refer Slide Time: 13:03) 

 

So, can you go to the slide please? So, this is the general structure of a stream cipher we 

have a secret key and we have a key stream generator and we are generating this key 

stream generator to get the key stream. And this is the plaintext, plaintext bit p 0, p 1, p n 

and then we are expiring with the c i key stream bit and getting the ciphertext bit. So, this 

is the encryption what Alice is doing. And after receiving this ciphertext bit, Bob is just 

having the same structure same stream cipher and Bob is generating the key stream bit 

again by taking the initial value of the state as the secret key and Bob is decrypting and 

getting the plaintext back. 

(Refer Slide Time: 13:50) 

 



 

 

So, this is we have seen if it is LFSR based stream cipher, we have n LFSR which is 

taking the input to the non-linear function f, and we are generating the key stream. 

(Refer Slide Time: 14:05) 

 

So, this is the structure. So, we denote this Z p as f of S t. So, S t is the state. So, state 

updation function. So, in our example it was h. So, basically g, so this is basically f we 

are denoting. So, Z t is basically sorry this is s. So, this is the key stream generator. So, 

we have taken this f, we have taken this state and we apply this f on it and we will get the 

key stream. 

(Refer Slide Time: 14:42) 

 



 

 

So, now this f is for a LFSR based stream cipher, we know this f is basically updating the 

function and this LFSR has this updation function. So, for all the bits, it is shifting the 

one position except the last bit - nth bit. So, nth bit is basically linear feedback of this bit 

depending on the polynomial which we are going to use for that. 

(Refer Slide Time: 15:20) 

 

So, this is basically and the S t is basically, so we take a state so basically what we have 

we have this is S t this is the finite state machine. So, it could be LFSR or it could be 

collection of LFSR, then we have f it could be anything. So, basically we have finite 

state machine and this machine this is the state at time t, so this is our S t. Now, it is 

applying a function f and this is giving us Z t. So, Z t is basically f of S t. So, this is the 

way we think that. 



 

 

(Refer Slide Time: 16:12) 

 

So, then for algebraic attack what we need to do we need to write this Z p in terms of this 

f in terms of algebraic equation. So, expressing the whole cryptosystem as a large system 

of multivariate algebraic equations, which can be solved to recover the secret key, so 

algebraic attack based on two basic strategies; they are basically we construct a system 

of algebraic equations involving the secret key using some known plaintext and 

ciphertext because this is a known plaintext attack. We know some plaintext bits and 

ciphertext bits. So, basically what we are doing this is the t. So, our ciphertext bit is 

basically t-th ciphertext is basically p t XOR with Z t. So, now if you know this 

ciphertext, if you know this c t and p t for some p, so this is a known plaintext attack. So, 

if you know this then what we basically will do? We then, Z t is basically c t XOR p t. 



 

 

(Refer Slide Time: 17:42) 

 

So, now, this is known, if this is some value, then what we have, we have basically some 

functions like. So, we know this Z t is basically f of S t is basically some c t XOR p t, 

now this value is known for some t. Now, from where we basically have a system of 

equation then we try to solve this system of equation. So, this is the construct the system 

of algebraic equations involving the secret key, because f 0 is the secret key, s 0 which is 

state is neutralized by the secret key. 

(Refer Slide Time: 18:27) 

 



 

 

So, this is the attack model of algebraic attack. So, here what we are doing, we have a 

key stream generator which is basically the finite state machine, which is a pseudo 

random bit generator it is a finite state machine. So, it is initialized by the state is 

initialized by the secret key shared between the Alice and Bob. And it is generating the 

key stream serially and then this key stream is XOR with the plaintext bit and generates 

the ciphertext bits, and send it to the Bob over the public channel. Now, after receiving 

the ciphertext Bob is doing the decryption like this. Bob is again generating the key 

stream, because Bob is also having the same pseudo random bit generator and Bob is 

putting the secret key as a initial state, and Bob is running the same thing and then Bob is 

extorting with the ciphertext with the this key stream bit and getting the plaintext back. 

Now, what Alice is doing? So, Alice is receiving this ciphertext, now suppose Alice is 

having this ciphertext bit and few ciphertext bit and the corresponding plaintext bit. So, 

this is the known plaintext attack; then basically the attacker is having this system of 

equation. 

(Refer Slide Time: 19:52) 

 

So, basically if the attacker knows plaintext bit, and the corresponding ciphertext bit, 

then he can construct the following system of equations. So, this basically this is a LFSR 

based stream cipher because these are the LFSR bit updates. So, every state is initializing 

by k 0. So, this is basically say for example, for if you know the first k plaintext on the 

corresponding cipher text. 



 

 

(Refer Slide Time: 20:36) 

 

Then what we have, we have this Z of k 1 which is basically f of L of k 1 k 0, this k 0 is 

the secret key shared between Alice and Bob or this is the private key shared between 

Alice and Bob. Because this is coming from that, because we know that p 1 XOR with c 

1, it is basically z all like this. So, similarly we have s 2 which is basically f of L k 2, so 

like this. So, these are all state updated functions for LFSR, but it could be general 

stream cipher. So, this way we have n many this key streams which is corresponding to k 

0. So, these are all function in k 0. So, this is a system of equation, where this k zero is 

the secret key and L is the state update function for the LFSR this L, and f is the non-

linear filter function used in the stream cipher, and s t is the key stream bit in the t-th 

clock. That means, t-th key stream, but it could be other than LFSR also it could be 

general stream cipher then we have a finite state machine and it is updating. 



 

 

(Refer Slide Time: 22:14) 

 

So, what next, so our next as so we got some system of equation. So, our next target 

would be to solve this system of equations, because this system may not be a linear 

system. If it is a linear system you could directly use the Gauss elimination method or 

some matrix method to solve it, but this system may not be always linear system. So, we 

will try to make this system to be linear system, so that is the method called linearization. 

So, we will talk about that. So, the question is how we can how can we solve this system. 

So, there are some algorithms to find the solution for this type of system one is 

linearization we will talk about that, then re-linearization, then XL algorithm to solve this 

system of equation. 



 

 

(Refer Slide Time: 23:10) 

 

So, what is the linearization, basic idea of linearization is to this linearization is the total 

system by introducing new variables in the system of equations and finally, solve. So, 

this system may not be a linear system. So, we will just introduce some new variable in 

this system to make it linear system. We will say if we have a variable say x 1, x 2, this 

is not a linear, but you can put this as y 1, so that way we will solve this. Now, once we 

have a solution, once we solve this in terms of y 1 then we will try to get the solution for 

x 1 and x 2. So, this is called linearization. 

So, the then the maximum number of monomials can be present in the system of 

equations of n variables of degree d is must be less than equal to summation of i is equal 

to 1 to d n to i. So, to linearize one system of equations of n variables of degree 

maximum d, we need maximum this many number of new variables in the final system. 

So, this numbers should have controlled because otherwise it will be a huge system then 

we may not get the solution, so that is also one important thing. 



 

 

(Refer Slide Time: 24:32) 

 

So, then final system will have unique solution if the number of independent equation is 

same as the number of variables present in the final system, so that matrix has to be 

invertible, but in many cases it is not happening. Then we need to think of generating 

some extra linearly independent equations. 

(Refer Slide Time: 24:56) 

 

So, suppose we have this example. So, we need to do the re-linearization. So, how we 

could do that? So, we know that the multiplication of the variables in a commutative 

operation in this re-linearization method we use with the commutative property to 



 

 

generate the more equations. So, we have to generate the more equation, because of our 

system of equation what we are getting is not invertible I mean it is not giving the unique 

solutions. So, consider for example, suppose we have a monomial this terms this non-

linear x 1, x 2, x 3, x 4. Now, we can rewrite this monomial in a different way like x 1 x 

2 then x 2 x 3 x 4 then x 1 x 3 and x 2 x 4 or x 1 x 4 x 2 x 3. Then we rename each of 

these different variable as y 1 i because there are, so this is y 1 2 this is y 1 3. 

(Refer Slide Time: 26:09) 

 

So, like if you have this term say x 1, x 2, x 3, x 4. So, this can be written as x 1 x 2. 

Now, we can put these or this is same as x 1, x 3, x 2, x 4 or this is same as x 1, x 4, x 2, 

x 3. So, now these we are denoting by y i j, y i j means x i x j. So, we have many choices. 

So, we can have corresponding equation. So, we rename this each of these different 

variable as y i j is; after substituting this new variable, we will get some new linear 

depend independent equations of this forms. 



 

 

(Refer Slide Time: 27:00) 

 

So, then it has been observed that many equations generated by re-linearization 

algorithm are linearly independent. So, once we got the linearly independent equations 

then we solve this then we have system is consistent then we can get a solution of this 

system and we can get the corresponding secret key. So, this is called algebraic attack. 

We basically generate some equations then we try to solve this equation by some of the 

method like linearization, XL method, Gauss, so once we get the system of equation, 

which is consistent then you apply the Gauss elimination method to solve this. 

Thank you. 


