
 

 

Internetwork Security 

Prof. Sourav Mukhopadhyay 

Department of Mathematics 

Indian Institute of Technology, Kharagpur 

 

Lecture - 41 

Universal Hashing 

 

We will talk about Universal Hashing. So, this is coming from what is the weakness of a 

hash function. 

(Refer Slide Time: 00:25) 

 

So, this is a fundamental weakness of a hash function. So, hash function is a function 

from any bit input, we have fixed bit output. So, domain size is very much bigger than 

the co domain size. So, there has to be collision. So, suppose the some company like 

Microsoft are they made a competition to get a hash function. So, you develop hash 

function, your friend develop another hash function and both wants to win the so. So you 

both submitted your hash function to the Microsoft, then what Microsoft will do 

Microsoft will give your hash function to your friend and your friend hash function to 

you and asked to perform, asked to find out for the input where it will perform badly. 

So, there has to be certain input where it will perform badly. So, your friend can get such 

input k or x, y pair such that so this is the; so always it is possible because it is a fixed 

that co domain size is very less and domain size is more. So, this is your friend can 

always get a key, a bad portion of the key where everything is mapping to a particular 



 

 

slot. So, more collisions are there. And can your friend will report to Microsoft, hey this 

is the set of input where my friends code is gone. I mean it is colliding to the particular 

slot, so that is always possible if you have time you can do that. So, that is the 

fundamental weakness of hash functions. 

So, to avoid that what we do, we can choose the hash function randomly at the runtime, 

so that is the idea of choosing the universal hashing. So, in universal hashing, we choose 

the hash function randomly, randomly at the runtime, so that now what will come with 

some input where your code is performing badly like it is (Refer Time: 02:53) because 

you do not know which random variable will be chosen. So, depending on that we will 

come to the construction of such hash function. 

(Refer Slide Time: 03:10) 

 

So, let us formally define what is universal hashing. So, suppose this h is a set of all hash 

functions or collection of hash function, set of all hash function h form u to this. So, the h 

is this set. So, it is basically set of all hash function which is call u to this. So, this is our 

collection. Now, among this collection and suppose we have a bad portion. So, bad 

portion, how we define the bad portion, bad portion means if you take any two key x, y 

and if we choose the hash function from this bad portion then there has to be then these 

two will collide. So that means bad portion is set of hash function from this collection of 

hash function such that h of x will be h of y for any pair of keys, for any x, y belongs to a 

cross u. So, this is the bad portion, so that means the collision is guaranteed if you 



 

 

choose our hash function from this then if you take any two keys then they will be 

colliding. 

Now, if the size of this bad portion, if the cardinality or the size of this bad portion is 

basically size of the total by M that means, M is the slot number of slots, so 0 to m minus 

1 is the number of slots. So, if there are 1 by m fraction of the total set is basically bad 

then we called this collection is universal collection of hash function. And if we choose a 

hash function randomly from this collection that is universal hashing, and it is a good 

choice, we will discuss that why it is good. So, this is the universal collection of hash 

function and why this universality is good that we will talk about. 

(Refer Slide Time: 05:46) 

 

So, now the question is why universality is good I mean why this collection is good that 

means if you take a hash function randomly from this collection why this will perform 

good. So, this is because if you just write a theorem like this, so let h be a hash function 

chosen randomly h be a hash function chosen uniformly at random from this form a 

universal hash universal collection of hash function universal set h of hash function. And 

then the expected number of collision with x if for a given x then for a given key x which 

you are searching say we are searching a key. 

So then the expected number of collision with this x is less than n by m which is the load 

factor and that is good. So, if we are searching for key x, now if it is expected number of 

collision is alpha that means, it is basically the load factor of the table then it is good 



 

 

news. So, we have to prove this. So, if we choose a hash function uniformly at random 

from a set of hash function then this is the expected number of collision with x. So, this 

we need to prove it. 

(Refer Slide Time: 08:25) 

 

So, to prove this, we will take help of what is called indicator random variable. Let us 

denote c x y is 1; if c x y is 1, if h of x equal to h of y, you take two key x, y and we 

denote this random variable value is 1 if they are colliding 0 – otherwise, this is how we 

different by indicator random variable. Then what is the probability that c x y is 1, this is 

basically 1 by m because we have seen if you take any two keys then you are choosing 

the hash function uniformly at random from this collection. So, it is basically there are 

total this way we can choose and if we choose that hash function from that bad portion 

then it will collide and that favourable case is this. So, this is basically 1 by m simple 

classical definition of probability. 

So, this is 1 by m and so what is the expected expectation of this. So, the expectation of 

this random variable is basically 1 into it is basically by the binomial random variable 

plus 0 into probability of c x y is equal to 0. So, this is basically 1 by m. Now we are 

looking for a given x, we are looking for the expected number of key is colliding with x, 

so that we denote by c of x the number of key is colliding with x. So that is nothing but a 

c of x y where this y is belongs to key space, I mean the key space which size is n. So, 

this is basically n minus 1 other than the x. 



 

 

So, if you take the expectation both sides. So, this is basically expectation of c of x y. So, 

y is belongs to minus x. So, this is basically n minus 1 by m which is less than m by n 

alpha. So, this is the proof, so which is basically 1 by m. So, this is good news. So, 

universally it is useable. So, if we have such collection, where the bad portion is just the 

1 by m fraction of the total collection then if we choose a hash function at uniformly at 

random from this collection then that hash function performance is good; that means, it 

will distribute the key uniformly; that means, load factor will be preserved. So, next we 

will talk about how we can construct such a hash function - the universal hash function. 

So, this is the construction one example of universal hash collection. 

(Refer Slide Time: 12:03) 

 

This is one example of or how to construct the universal example of universal hash 

function. So, here we divide the keys. So, we have a long keys; we divide the key into r 

blocks k 1, k 2, k 3, k r such that each of k i’s are between 0 and m. So, each of these 

block size is maximum m, m is the number of slot. So, this is how we divide. So, maybe 

last block we have paired something to make it m size. So, if m is 2 to the power r or m 

is 2 to the power say l then each of this block is l bit. So, now, what we do we take a 

vector - a randomly a 1, a 2, a 3, a r, and this is a i is are also lies between this. And each 

this a i is chosen randomly uniformly at random. So, this is a constant, we randomly 

choose this constant, and we fix this constant. We choose this a i is then we have a this 

vector a and we fix it that is a constant now. Now, we will use this for this hash function 



 

 

to construct a hash function, and that hash function is denoted by h of a because this will 

depend on this constant a. 

So, this h of a k is basically summation of a i k i i is equal to 1 to r mod m, this is 

basically the inner product between a vector and this is the key, and this k vector. So, key 

is basically k 1, k 2, k r and a vector is basically a 1, a 2, a r. So, you are just doing that 

inner product between a vector and k vector and we obviously have to take the mod m 

because our slot size is 0 to m minus 1. So, this is one construction of hash function. 

Now, we need to prove that this collection I mean collection means if you vary a, so a is 

chosen from this way. So, if you vary a, we are getting different, different hash function. 

So, varying a means we are varying this a 1, a 2, a r these are chosen randomly. So, this 

will give us a collection. Basically our collection is h is basically h of a collection, so a is 

varying, so this collection, so this is chosen randomly. So, this collection we have to 

prove that this is a universal collection. 

(Refer Slide Time: 15:51) 

 

So, how to prove this? So, what is the cardinality of this h this collection this h is 

basically. So, we have the choice for a i each a i is are taking value from zero to m minus 

one. So, this cardinality of this is basically m to the power r, because it is depend on, so 

this is a 1, a 2, a r. So, each this can be m ways, this can be a m ways like this, this can be 

m ways. So, m into m into r times, this is basically m to the power r this collection. 



 

 

So, now, we need to consider the bad portion. So, bad portion means the where coli 

collision is there so; that means, we take two keys x and y. So, x is x 1, x 2, x r, x 1, x 2, 

x r dot dot dot; and y is say y 1, y 2, y r. So, now, we want to an x and y is not equal. So, 

if x, y is not equal you can assume one of this it is not equal. So, without loss of 

generality, we can say x 1 is not equal to y 1. Now, we take actually we are calculating 

the cardinality of the bad portion. So, we take h of x equal to h of y. So, h of x is nothing 

but summation of a i x i mod m is equal to summation of a i, so this is a, this is a, a i y i 

mod m. So, if these two is under mod m so that means, they are congruent 1 to r i is 

equal to 1 to r so that means, they are congruent. So that means, a i x i i is equal to one to 

r is congruent to summation of a i y i, i is equal to 1 to r mod m. 

(Refer Slide Time: 18:03) 

 

. 

So, now we want to simplify this, we take this here. So, we take this side. So, summation 

of a 1 we take common x 1 y 1 plus summation of a i x i minus y i, this i is from 2 to r, 

this is congruent to 0 mod m. 



 

 

(Refer Slide Time: 18:10). 

 

So, now we take this, this side. So, a 1 x 1 minus y 1 is equal to minus summation of a i 

x i minus y i i is equal 2 to r mod m. So, now we know this x 1 is not equal to y 1. So, 

this means x 1 minus 1 y 1 is not equal to 0. So, we can take the inverse of it. So, a 1 is 

basically is congruent to minus summation of a i x i minus y i i is equal 2 to r into x 1 

minus y 1 inverse mod m. So, this will give us no choice for a 1 so that means, so if we 

have a 1, a 2, a r, so once we choose this then a one is fixed by this relation. So that 

means, this can be choose a m ways all this can be choose m way, but only thing this can 

be choose one ways. So, this is total number of such collection is this is the bad 

collection is 1 into m into m into like this. 

So, this is basically m to the power r minus 1, which is basically m to the power r by m. 

So, this is basically cardinality of h by m. So, this is the size of the bad portion. So, it is 

the bad portion is 1 by m fraction of the total portion. So, this collection is a universal 

collection. So, this is an example of universal hashing. Now, if we choose a hash 

function from this collection that is called universal hashing. Now, let us analyze about 

the; so this is one construction. Now, let us talk about what is called perfect hashing, 

there we will use this universal hashing, universal hash function. 



 

 

(Refer Slide Time: 21:04) 

 

So, in perfect hashing what we have the problem is we have given a set of keys - n keys 

this is static arrangement. We have given a set of n keys and we need to create the table, 

so that there will be constant number of I mean the search will be in constant time for 

searching we should not take more than constant time, so that is the idea. So, this is a 

static arrangement so that means, we are not allowing any new member to join any new 

record to be join or any record to be deleted. So, basically we have n keys. So, this is the 

key pool you have n keys and we have to arrange these in a table in such a way that the 

searching will be in constant time. So, this is basically a two level hashing. 

So, what we are doing. So, in the first level, so there are n keys. So, in the first level, we 

create a hash function, we choose a hash function this could be a universal hash function. 

So, we have a original hash function. So, we apply these are the keys. So, we apply this 

hash function on this keys. This is the first level hash function. This is 0 to m minus 1. 

This is the level one hashing. So, if we do that there will be collisions. So, suppose at the 

nth level, so suppose at the ith slot there are n i number of keys are colliding. So, at the 

ith slot n i number of keys are colliding. 

So, what we will do, we will then we cannot store n i keys over here. So, what we do, we 

will go for the second level hash table. So, here we will have a table which size is n i 

square, if n i keys are colliding here. And this is seven left the second level hash table. 

So, this is n i square. And for second level hash function we need to store the hash 



 

 

function over here, so that we can store by just storing the a vector. And then this is 

basically h of a we apply on this and which will put it here, which will map this keys into 

this table. 

(Refer Slide Time: 24:02) 

 

So, let us take some example. So, this is the idea. So, this is say we have some setup keys 

and we have the first level hash function dot dot dot. Now, this is our n keys. Now, 

suppose here we have some hash file this is only one set, but suppose here in this table, 

we have two keys which are colliding say 3 1 1, 4 1 2 keys are colliding here say in the 

first level. So, what we do, we need to create a second level hash function, second level 

hash table of size, since two keys are colliding of size 4. So, this is 4, this is the size of 

the next level hash table, and then we need to apply we need to have a value. So, say it 

could be say 51. So, this is the a value, a will give us the hash function because we need 

to have the hash function. So, then we apply this h of a. So, this is maybe 3 1 1, this is 4 

1 2 and these are empty. So, this is the first level hash function and this is the second 

level hash function. So, this is 0, 1, 2, 3. So, h of 51 of 3 1 1 is equal to 1, h of 51 of 4 1 2 

is equal to 3. But h of 3 1 1 is equal to h of 4 1 2 say this is a 0, 1, 2, 3 slot this is 

basically 3. So, they are mapping. 

Now, suppose we have another slot which is having three keys are colliding then suppose 

these three keys are say 590, 611, 712, these three keys are say colliding in here. So, in 

that case, we will put a table of nine slot 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 we put nine slot for the 



 

 

second level hash function. And you have to have a say this is the 69. So, this is a 590, 

this is a 712, and this is a 611. So, these are all empty so that means, at the first level all 

these points are colliding at here. So, say this is set ten slot so that means, h of 590 is 

equal to 10 is equal to h of 712 is equal to h of 611 these are colliding. So, three-three 

keys are colliding here. So, this is the now in the first level. 

So, for second level, we need to have three square nine table size and we need to choose 

a hash function that is also uniformly we are choosing from the universal hash function 

and that a value, a vector is basically we choose some a vector that will give us the hash 

function. So that means, h of 69 this is the a value of 590 is 1, h of 69 of 712 is equal to 

4, h of 69 of 611 is equal to 7, sorry 9 slot. So, it should be 0 to 8. So, this is the way we 

just have the second level hashing. 

(Refer Slide Time: 28:31) 

 

So, in the second level the collision we can guarantee that is nil because suppose we have 

three keys and we are having nine slot. So, three keys are distributing in the nine slot. So, 

if we have n keys we are distributing in the n square slot then the number of collision is 

even less than one that we can prove. So, we have huge space to distribute the keys. So, 

the collision will be less in the second level. We can guarantee that on an expected 

second level there will be no collision even less than half collision will be there. 

So, how to prove that. So, suppose this theorem is telling, suppose there are n keys and 

there are n slots at distributing, this is in the second level analysis then the collision is 



 

 

number of collisions should be less than half we want to prove. So, then if we take two 

pair of keys, what is the chances of they will collide, the probability of collision is 

basically the probability of collision is 1 by m this is because we are choosing uniformly. 

Now, there are n c 2 number of pairs. So, this is the expected number of collisions. So, 

this is basically n into n minus 1 by 2 in n square. So, this is less than half. 

So, even we cannot expect one collision. So, expected number of collision even is less 

than half, because here we have nine slot and we are storing only three keys. So, 

collision is nil actually. If our hash function is uniform hash function, it will distribute 

the key uniform among the slot. Now, another thing we should analyze the storage; 

intuitively it is taking the we are taking huge number of storage in the second level. In 

the first level, storage is m, size is m. And in the second level, intuitively we are having 

the n square i mean if the n i is the number of keys colliding in the ith slot, so we will do 

the storage analysis. 

(Refer Slide Time: 30:06) 

 

Storage is basically m for the first level, and the second level is n i square; i is equal to 

we have 0 to m minus 1. So, this is basically n i is basically number of keys going to 

colliding to ith slot. Then if you take the expectation of this storage then it is basically m 

plus summation of expectation of n i square. Now, these analysis we can this is the 

similar analysis if you are familiar with some sorting algorithm, which is called bucket 

sort, if we have n keys we are distributing into the buckets. And if if we denote this x i j 



 

 

is basically 1, if the k j is going to this slot - ith slot or ith bucket, 0 otherwise then the 

basically n i is basically summation of x i j, j is coming from how many keys are there 

want to n something like that. So, squaring means squaring of this if you take the 

expectation this can be shown that, this is also order of m. This analysis is there in the 

any algorithm book, this is the bucket slot analysis. So, this storage is basically again 

order of m. So, we are not really using the extra memory much here this is reasonable 

order of m. 

Thank you. 


