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Floor Planning Algorithms 

 

So, in this lecture we shall be talking about some of the algorithms for floor planning. 

So, floor planning algorithms. 
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So, we shall be briefly looking at several broad classes of algorithms like we will see that 

some of them are integer, linear programming based. Some of them are based on some 

particular data structures like rectangular dual graph, then hierarchical tree. Simulated 

annealing is a very you can say common method which gives very good results and there 

are some other variations. 
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So, integer linear programming we shall not go into much detail; basic idea is that we 

model the problem as a set of linear equations, not only that we also specify some cost 

function some objective function that is to optimize, and we give it to an ILP solver. The 

ILP solver will provide us with the optimum solution, because ILP solver whatever 

solution it gives it is the best possible for the optimum solution. So, the optimality of the 

solution is guaranteed, but; however, the computational complexity is every high, and 

therefore, it can used only for very small problem instances; so for practical problems 

you cannot really use this. 
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Rectangular dual graph approach this is very interesting approach, you can see here we 

utilize the linkage of floor planning with partitioning, typically when partitioning is 

carried out the output of the partitioning process is represented by graph. Floor plan is 

obtained by converting the graph into its rectangular dual. Now let us first very quickly 

see what this rectangular dual means. 
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Let us take a example let us start from the other way round let us start with the floor 

plan. Suppose I have floor plan like this and these are the different blocks A B C D and 

E. So, when we talk about rectangular duality, the idea is that ever rectangular region in 

this diagram or in this figure will correspond to a vertex. So, which I am shown like this, 

there will be 5 vertices; and every pair of blocks which have a common boundary, like 

you see A and B is having a common boundary. So, there will be an edge connecting 

these two vertices. A and C is having a common boundary so there will an edge 

connecting this. B and D is sharing a common boundary; D and C is sharing a boundary, 

D and E is also sharing and C and E is also sharing, not only that B and C is also sharing. 

But here so we have drawn this graph from the floor plan; but actually what is done is 

the other way round. You will be given this graph, which will be the output of the 

partitioning problem that is what we just now said. So, the graph will like this then from 

this graph you will have to translate it into a floor plan. Now it is not difficult to do it 

given a planer graph like this you can convert it with a rectangular dual replacing every 



vertex by a rectangular region and you will getting the floor plan like this. Now this is 

you the output of the partitioning problem, where each vertex will indicate the blocks 

and the edges will indicate the number of connection between them; the weights of the 

edges that how strong they are connected, this is the idea behind rectangular duality. 

So, just as you have seen the rectangular dual of graph satisfies the properties, each 

vertex in the graph will correspond to a distinct rectangle in the floor plan, and for every 

edge the corresponding rectangles they are adjacent they will be sharing some horizontal 

or vertical segment. 
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Now, this is another example you are shown, this a floor plan and this is the rectangular 

dual graph. Now one property you can see, this you can work out with other examples by 

hand yourself also that you take any such planer floor plan rectangular floor plan, you 

convert it to the dual graph, you will see that the dual graph will consist of a set of 

triangular regions this is called a planar triangular graph. 

Planar means it can be laid out on a plane, without the edges crossing each other. So, 

planar means you can layout the graph on a plane surface, the edges will not be crossing 

each other; because the floor plan was planer, the graph you are embedding on it will 

also be a planer graph. So, it is automatic, and all the faces will be triangular in nature 

this is the property. So, this graph will essentially be a planer triangular graph, which you 

have to translate into a floor plan. 



(Refer Slide Time: 06:49) 

 

Now, there are a few things; now if you have a floor plan with a cross junction see this 

will not correspond to a planer triangular graph, because 1 and 2 an adjacent, 1 and 4 are 

adjacent, 2 3 and 3 4. So, it will look like this, but 1 3 and 2 4 they do not sharing any 

horizontal and vertical line. So, if we have a situation like this, you do not get a PTG. 

But if you have a situation like this so what you can if you slightly shift this edge 3 4 if 

you shift it slightly like this, then there will be a sharing between 2 and 4 there will be a 

edge between 2 and 4 coming in right. 

So, PTG is a property, where you which you must have an from PTG you can translate it 

into this graph. Now there is one problem though that every planer triangular graph 

cannot be translated into a floor plan, this is the one and only one problem case this is 

called a complex triangle. This actually indicates a complete graph of 4 vertices drawn 

like this, there are 3 triangular faces. Now you can try it out in any way you will see that 

you cannot draw a floor plan for which the corresponding dual graph will be this. So, this 

complex triangular is one difficult problem in this particular approach whenever you 

encounter it in a graph. 
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So, let me just tell you first. So, here what your saying is that we start with that graph 

which our partitioning algorithms is giving us some blocks, and their interconnections 

indicating their strength of connections. Now if we have the planner triangulations in that 

graph, you can map it to a layout or a floor plan. So, this you will always be having, but 

if you have a complex triangle there you cannot map that sub graph into a rectangular 

dual into a floor plan.  

So, this is one of drawback, there is an interesting approach to floor planning where we 

start with a graph representing a partition, and from there we translate it into a floor plan; 

but the main issue is the issue of complex triangle. So, what we do one possible heuristic 

that has been proposed is something like this, you consider the complete partitioning 

graph, you identify all complex triangles that exists there you select one edge from each 

of those complex triangles, and in each of edges you add one edge, which means it is 

something like this. Let say your complex triangle look like this. 
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So, what we are saying is that in anyone of the edges you add a vertex and we add a 

dummy edge here. So, this is no longer a complex triangle. So, you that complex triangle 

problem solved if I add dummy vertices like this. So, the problem solution suggest is you 

add such dummy vertices, but again determining the minimum setup of weight this kind 

of edges, that can eliminate all complex triangle is also proved to be a difficult problem, 

but however, some heuristics are available and some tools I means have actually used 

this kind of heuristics to create a floor plan right. 
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This hierarchical approach is an interesting approach, which also is quite commonly 

used. So, here what we say is that, we use some kind of a divide and conquer approach; 

that means, we divide the problem into smaller sub problems, which are easily 

manageable like we consider a small graph with 3 vertices; that means, 3 blocks. So, 

these 3 blocks can be placed in 3 possible ways. So, what we saying is that, if we have a 

small set of blocks we have a graph like this, we have the properties of a b and c what are 

their areas and their properties how they are connected. So, you can explore the alternate 

floor plans and find out which one of these 3 is the best. 

Supposes you find that the last one is the best. So, you freeze on this and you merge this 

a b c into a single micro node, which means you have already solved this sub problem; a 

b c can be best laid out in this fashion right the other two you ignore this is the basis idea. 
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So, after the optimal configuration for the 3 modules are determined as I said you merge 

them into a single module. So, the next higher level that single so called super vertex will 

be there, and you go on repeating this. But the problem here is that as I had said you are 

considering small number of vertices at each steps, but how small? 3 4 5 6 well it is seen 

that the number of such possibilities they increase very rapidly with the number of 

vertices. 



So, typically we limit the number of nodes to 5 not more than that, the number of 

possible floor plans increases exponentially with d; d is the number of vertices in the 

graph. 
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So, just an example for d equal to 2 these are the 2 possibilities, for d equal to 3 you can 

have 6 possibilities, in this way it goes very rapidly as we move to d 4 or 5. So, the idea 

is that if you have a graph of that size, you try to find out explore all possibilities and 

find out the optimum configuration of the floor plan. Take it; freeze it and merge all the 

vertices into a single super vertex for the next level right. 
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So, bottom up is the natural approach in this hierarchical method. So, modules we 

represent as vertices in the graph, while the edges will indicate connectivity the edge 

weights. So, the modules which have higher weights the pairs of modules, they will be 

clustered together; with the restriction that number of modules in each cluster will be 

limited to d this d is our limit, like the idea is this we have a graph each vertex indicates 

our blocks, the edges the weight of the edges indicates how many connections are there 

between the blocks. 

Suppose I select a set of d such nodes which are strongly connected, you take that set of 

d nodes, place them optimally because you know all possibilities, explore all the 

possibilities, find out which floor plan configuration gives you the minimum cost take 

that, and replace those five nodes by a single micro node, but limit that number to d 

equal to 5. So, exhaustive enumeration is done at every step, this cluster is merged into a 

larger module for higher level processing repeat this process. 
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Now, this is of course a greedy procedure, where you sort the edges in decreasing 

weights typically the heaviest weight indicating the strongest connectivity, will typically 

be chosen first and the modules are clustered in a greedy fashion, and this is repeated I 

shall be showing this with an example that how this is done. So, let us take an example 
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I just come back to this let us take this example first this is a graph with 5 vertices the 

weight of the edges are shown. So, you can see that in a greedy clustering approach the 

vertices which are strong most strongly connected like a and b, c and d you merge them 

together, you put a and b together, you put c and d together. So, once you do it you only 

are left with e. So, which is relatively mean weekly connected 2 and 1 with this clusters. 

Now what happens is that this a b gets connected together, c d gets connected together, 

but you do not have any where to place e. So, in this greedy clustering possibly you will 

be placed on the right. So, you will be getting a lot of empty spaces on top and bottom 

ok. 

So, one heuristic that has been suggested is that this is a problem; some lightweight 

edges may be chosen at higher levels in the hierarchy resulting in adjacency of two 

clusters of incompatible areas that may lead to an increase in the layout area, like you see 

here. This e, this a b and c d are nicely compatible in terms of the height, so e you cannot 

place anywhere down. So, you have to place it on the right. So, this happens. Now this 

heuristic says; so if you see that a cluster is connected to a neighboring cluster with a 

very small weight, you club them together initially this is just a heuristic. The idea is that 

you see d and e are very weekly connected with a weight of one, you club d and e 

together at the beginning itself. So, d and e will be side by side ok. 

Now, you use the rest a and b together, c and d together. So, here you will see that the 

solution we get will be more compact, because d and e because they are together you can 

place it just below c. But here because c and d are merging, d will be placed just to the 



center of c below it. So, you do not have enough space to keep e either to the right or left, 

but here it happens; so this just a heuristic which give reasonably good solution. 
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Now, top down is the other alternative. So, here you start from the partitioning process. 

So, you start from the whole netlist. So, the idea is this. 

(Refer Slide Time: 18:38) 

 

So, you have the entire netlist that corresponds to your complete floor plan, you partition 

this netlist into two parts, in the floor plan this corresponds to two parts. 



You partition this into 3 parts let say, here itself you partition the floor plan into 3 parts, 

here you partition it into 2 parts, here you partition in 2 parts. So, there is a one to one 

correspondence, top down you are partitioning the netlist and at the same time in a 

corresponding fashion you are also partitioning the floor plan. So, you will be getting let 

say these are a b c d and e. So, you will be getting exactly where in the floor plan you 

will be placing them right. So, this is the top down approach. 

But the major issue is that we have seen the Kanninen Leigh partitioning algorithm, 

which divides a graph into two parts, but here in general we need a method which can 

partition a graph into more than two parts; but such good algorithms are not very 

commonly available we have to use heuristics and approximation methods. So, k-way 

partitioning it is called. So, there are algorithms for k-way partitioning, which can be 

used here, which divides a netlist into k difference parts; but again the computation 

complexity to obtain good solution there is quite high; so that is one problem, because of 

that this is not very widely used balanced partitions is difficult to obtain, balanced means 

the partitions of equal sizes so it is difficult to get right. Simulated annealing is an 

interesting method. 
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So, simulated annealing is a very commonly used method which is used in VLSI care in 

other applications also, this modules the annealing process of metals. So, this is basically 

an optimization problem a solution to an optimization problem, where do you have a 



solution we start with a solution, we have a set of moves that can take us from one 

solution to the other, and we have a cost function in which you can evaluate. This means 

for a given problem I have my solution, their said means that we have a solution 

representation. It is an iterative process; at every step we make some small changes in 

the solution these are called moves. After making the change we check whether we are 

getting a better solution or not, if we get a better solution there is a cost function we can 

check using that if we get a better solution we always accept it, but if you get a worst 

solution then also we may expect it, but that probability will decrease with time, this is 

called the annealing process or the cooling process in metals whatever it call. So, this is 

the basis idea behind the simulation simulated annealing algorithm. 

So, in this method for floor planning the floor plan is represented by a tree, and the 

polish notation that I talked about earlier that postfix notation, that same kind of postfix 

notation is used for representation and also for manipulation of the moves. So, let see 

how. 
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So, this notation I am just repeating for your convenience, this i and j indicates two 

blocks, ijH means something like this. 
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This i and j are connected by a horizontal line i and j, this will denote by ijH. Similarly 

ijV this means rectangle j is on the left of rectangle i. If I write i j V this will correspond 

to j is on the left of i separated by vertical line. So, every such slice is representing the 

polish or the postfix notation like this. 

Now, define a normalized polish expression, which says that a polish expression is called 

normalized if it does not contain consecutive H or V symbols; this is used just for 

reducing some amount or redundancy because as you have seen earlier the same floor 

plan can have multiple slicing trees, or they can have multiple polish notations. So, this 

is one way to normalize it fine. 
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Let us take an example this is a floor plan, there are two alternate slicing trees you can 

see, you can either merge 1 and 2 first, 3 and 4 first and then combine them or you can 

merge 1 and 2 first, you combine 3 with it than combine 4 with it. So, the corresponding 

polish notations will look like this 1 2 H; that means, dash 3 4 V; that means, bar this this 

bar this this bar, this and similar for this 1 2 dash, 3 bar 4 bar, you can see here there are 

two vertical notations consecutive, but here there is no such this one will be considered 

to be normalized. 
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So, for representation will be using only normalized expression; this is what we do then 

some of the parameter that the moves I talked about. So, 3 moves are defined here, the 

first move says you swap two adjacent operands, move two says you complement a 

series of operators between two operands this is called a chain. Complement means if it 

is a V you make it H, if it H you make it V. So, complement a series of operators 

between two operands means, suppose I have something like I have a block a, I have a 

block b between that say I have dash bar dash let say. So, what it says these you replace 

by bar dash bar complement each of them, this is called a chain; and the third move says 

swap two adjacent operators and operands. 

So, if you have a dash you replace it by dash a something like this swap them; and the 

first one is of course, swap to adjacent operand; that means, if it is ab make it ba, and the 

point you notice that after making a move we will consider it only if it results in 

normalized expression, because you can check moves a and b will leave a normalized 

expression to a normalized one only. Only move c can result in a case where a 

normalized expression can become un normalized like you might be having a situation it 

was a dash, let say dash. So, if you swap these two; it may become dash dash a. So, you 

may get two consecutive dashes it may become un normalized fine. 
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So, the cost function again will be very similar, you have area you have the wire length 

then some weighted function this I have already discussed earlier, same kind of cost 

function you can use. 
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And this is just an example. Let say this was an initial solution from where you are 

starting; this is the corresponding polish notation. So, I am just illustrating one possible 

sequence of moves, you make moves a which means you are swapping two operands, 

this four and 3 you make it 3 and 4. So, what will happen? 3 will come here four will 

come there, so we get a solution like this. Move b; so between let say 2 and 3 you 

complement everything, there is only one you complement it to dash. 

So, new layout looks like this, move c; move c what I do? This 4and this dash you swap 

them this become this. See this example I have manufactured deliberately just to show 

you that some sequence of move can result in a very nice final solution, but in the 

practical (Refer Time: 28:39) case. You will have to do a lot of such iterations, lot of 

trails and errors and you will possibly arrive at a good solution at the end, but this 

example actually shows you that it is possible to find a sequence of moves through which 

from a bad solution you can go to a good solution. 
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And lastly let us just talk about rectangular and L-shaped blocks, you see the block 

shapes can be anything not only rectangle they can be L-shaped like this. But even if you 

restrict yourself only to rectangular blocks, whenever you put blocks side by side it can 

take the shape of L like this and also whenever you put the blocks in sequence one after 

the other, you can lead up to a situation as I it is shown here where you get a wheel kind 

of a structure non sliceable. 

So, although each blocks were rectangle as we move one after the other you go on 

connecting, at the end you might get a wheel kind of a structure. So, these are some 

complexities you need to consider while generating constructive rectangular floor plans. 

So, I just tried to give an overview regarding the possible floor planning algorithms 

without trying to go into the very details of them. So, I think you will have a fair idea 

regarding the approaches that are followed. 

Thank you. 


