
VLSI Physical Design

Prof Indranil Sengupta

Department of Computer Science and Engineering

Indian Institute of Technology, Kharagpur

Lecture – 07

Partitioning

So, continuing with our discussion on VLSI physical design. In this second week we

shall be looking at some of the, you can say initial steps of design automation at the

backend design liable, namely we shall be looking at the problems of floor planning

placement and of course, before that we need circuit partitioning. So we start our

discussion with a lecture on partitioning which is usually the first step in this process. So

let us first try to explain this scope of the partitioning problem and what does it involve.

(Refer Slide Time: 01:10)

So, when we talk about partitioning, we take any kind of a system design netlist, it can

be a netlist at the level of gates at the level of transistors or in fact, any kind of modules

and blocks. So when we say we are doing partitioning, we are essentially decomposing

the system into smaller and more manageable subsystems. Such that each of the

subsystems can be handled designed and laid out independently, but there are a few

criteria that needs to be satisfied in this process, so while during the decomposition we

have to care that the number of connections between these partitions or subsystems must

be minimized. And this decomposition we can carry out hierarchically making the blocks

smaller and smaller, until we reach a stage where each of the blocks can be handled and

designed independently.

So starting with a large system we continually go on partitioning it in smaller and smaller

pieces, until we reach a stage where all the pieces are of manageable size. So, as the

output of partitioning, we get the individual module netlists let us say there are n such

modules and of course, how they are interconnected this we call as the interface

information.

(Refer Slide Time: 02:50)

Let us look at the same example we had a look earlier. So we illustrate the problem of

partitioning with respect to this gate level netlist that we are seeing here. So we have a

circuit comprising of 48 gates so in this example we are illustrating how to divide it up

into 3 clusters or partitions.

Well, one of the obvious objective is that the partitions has to be roughly of the same size

so in this case the sizes of the partitions are 15, 16 and 17. There is another requirement

as I had mentioned the number of interconnection line as you can see, between the first

and second partitions the number of interconnections are 4 and between second and third

it is also 4. So the objective of minimizing the number of connections across partitions is

also fairly satisfied. So this example shows roughly how a partition or the partitioning

process should split a netlist into a smaller netlist.

So, there are 2 criteria, number one the partitions need to be approximately of the same

size and number 2, the number of connections between the partitions has to be

approximately equal.

(Refer Slide Time: 04:19)

So, when we talk about partition this process can be carried out at different levels for

example, when you design a system we can carry it out at the system level the whole

system design we can partition into subsystems, but each of the subsystems can be

possibly be mapped into a printed circuit board. Once we have a PCB or a board, then we

can partition at the level of the board. So inside the board we can see that there can be a

number of chips. And even inside a chip when you are designing a chip there can be a

number of blocks or modules so a connection of them.

So, you can say the partitioning can be done at the system level at the board level or even

inside the chip at the chip level. And the point to note is that when you have a large

system usually the total circuit is divided across a number of printed circuit boards

whereby we get the system.

The delays are important well if we are connecting 2 points inside a chip suppose the

delay is X, but when you are going across chips between 2 chips within in a single board

the delay can be roughly 10 times, but when we go across boards, it can be as large as 20

times or even more. So you can see that the delay can be of the order of the magnitude

higher as we go for you can say intra chip routing to intra boards and across boards. So it

is important to ensure that the critical nets that we have they have to be put within the

low delay regions as far as possible; that means, inside the chip it is preferable, if it not

possible only then you can go across chips.

(Refer Slide Time: 06:21)

So, a simple illustration here, so, on the left we see board which consists of, this is a

system, let us say system which consists of 2 boards. And each of this boards consist of

some chips. So I am showing some connections so a connection between a block a inside

this chip and A block B inside this chip this will incur a delay of 10X. Similarly,

connection between this B here and C on the next board it can be 20X. So from A to C

the total delay can be 10 plus 20, but suppose in an alternate mapping if we put A and B

within the same partition, then the connection between A and B the delay can be only X.

And also the C if you can put it on the same board then the delay between B and C can

be B and C can be only 10. So instead of 30X here the delay between A and C becomes

11X. So this shows you so how the critical nets or the higher delay parts can be put

means inside a chip or within a board, so as to minimize the delay as much as possible.

Now, one thing we should also remember, well we normally talk about the critical paths.

The paths which take maximum time for signal to propagate; the critical paths typically

determine the maximum frequency of operation of the circuit. Now the way we have said

we are trying to break a critical path or refine a critical path by putting them into higher

speed sections of the circuit. So that way our critical path can become of smaller sizes.

But one thing you should also remember, well in doing this some of the other paths

which were earlier inside the chip may go across the chip and their delay might increase

in the process, some of the paths which were not critical earlier might become critical

after this change or modification.

(Refer Slide Time: 08:44)

So, the partitioning problem, if we want to formulate, so we can say it like this, so we are

given a netlist, we are wanting to partition this netlist into a set of smaller netlists with a

number of these requirements to be satisfied.

The number of connections between the partitions they have to be minimized, delay due

to partitioning this I have just now mentioned the critical path delays this has to be

minimized, at least the signal nets which are critical which determine the clock

frequency. And each chip or board usually has a limit to the number of interconnecting

terminates that you can have. So the number of terminates has to be within that

maximum value limit. And of course, each of the partition should fit a chip or a board so

it this can have some maximum upper bound in terms of the size or area. And also the

total number of partitions that you are allowed to have that can also be specified, that you

can have this many number of chips in which you can partition a whole design or this

many number of boards not more than that, so these are the restrictions.

(Refer Slide Time: 10:04)

 so talking about the partitioning techniques, broadly the techniques can be classified as

either constructive or something called iterative improvement. Constructive placement

means we are starting with nothing we are starting with an empty partition, and we

slowly add blocks or modules to create the partitions bigger and bigger in that way we

allow the partitions to grow, but in other hand there is a second class of algorithms these

are called iterative improvement. Here the idea is that we start with an initial partition we

have several partitions already existing to start with, and as part of these algorithms we

try to improve the quality of the partitions by making changes incrementally and

iteratively on this given set of blocks and the partitioning.

(Refer Slide Time: 11:15)

So, let us look at some of these methods one by one. Well random selection is very

simple. This says that you have a set of nodes. So you randomly select the nodes one at a

time and you go on placing them into clusters of fixed size, until the proper size is

reached. What does this mean?

(Refer Slide Time: 11:38)

Let us say suppose I have a requirement that inside a cluster I can have up to 10 blocks.

And suppose I have a set of blocks to place, there are many such blocks. So what I do

from this set I randomly pick one, I place. I randomly pick another, I place. I randomly

pick another, place. In this way I continue till this limit of 10 is reached. So once this 10

is reached I can say that my partition P 1 is done. Now I move to my next partition P 2.

So in a similar way I again pick the blocks randomly I place them here, until my limit of

10 is again reached. So my P 2 is done. Then I move to P 3, P 4 and so on. So this

method you can see is very simple and pretty obvious. And quite naturally the way we

were doing it. You were doing it entirely randomly. We were not looking at the property

of the blocks the way they are connected and so on. So usually the quality of the

partitions that are generated in this process is not so good.

So we look at another method which is better in that respect, and we call it cluster

growth.

(Refer Slide Time: 13:02)

Now, in the method of cluster growth what we do, we start with a single node and add

other nodes to form partitions, but not randomly based on connectivity. And the number

of clusters you want to divide that can also be in input parameter. So let us look into the

outline of this algorithm which has been shown here. Here let us say that we have the set

of nodes let us call it capital V. And m denotes the size of each cluster. So the number of

partitions will be the size of V divide by m. So what you do for each partition for i equal

to 1 to n, we repeat. So we initialize a variable seed as the vertex in this set of what is V

which has the maximum degree. Degree means it is connected to maximum other blocks,

the block which is maximally connected to other blocks.

You select that vertex and let that vertex be my initial seed for that partition. I call it V i.

V I denotes the ith partition. So once I select this one, I remove this seed from the

original V I take it out. Then since the size of each cluster is m so I have to add this m

minus 1 in fact, j less than m, this m minus 1 remaining vertices to V i. So what I do at

every step I check and find out a vertex t, which is maximally connected to the vertices

which are already there in V i. So what I do? We take the union of t with V i, and we

take out this t from V repeatedly and once you complete this process this said V will be

empty, and we get our just desired cluster. So this is one very simple method depending

on the connectivity we try to create the clusters and we grow the clusters in size

iteratively one by one.

(Refer Slide Time: 15:35)

Now let us move into some methods which are little more practical, in the sense that we

have lot more flexibility. Here this classes of methods are called hierarchical clustering.

So what they do they do something like this? You consider a set of modules or objects

and group them depending on connectivity means closeness. Like suppose if there are 2

blocks between which you said that there are 10 connections, they will always want

those 2 blocks to remain together closer together. So this is the measure of closeness.

The blocks which are more heavily connected they should be kept closer together this is

the basic idea. So what you do we carry our cluster in a hierarchical way. The 2 closest

objects in terms of the connectivity are clustered first, and once we do this this sphere of

objects are merged and considered as a single object subsequently. And you repeat this

process just one by one you try to select 2 vertices which are closest in my remaining

netlist and you merge them together and you keep the information in which order you are

merging the vertices, because you will be using this later to do the actual partitioning.

So, you repeat this process, and you stop when subsequently a single cluster is generated

and something called a hierarchical cluster tree has been formed, a cluster tree which

indicates this sequence of object pairs which have been merged to generate the single

cluster. So I am showing an example to illustrate. Then once you do this you can cut the

tree to form 2 or more clusters. Well let us see how it is done.

(Refer Slide Time: 17:44)

Let us take an example like this. Where this 5 vertices indicate some small netlists or

some basic elements there can be gate there can be small set of gates. And this numbers

they indicate the number of connections or the closeness. This 9 indicates there are 9

connections between V 2 and V 4. This 1 indicates there is one connection between V 2

and V 3 and so on. Now once you do this, you see that which pair of vertices are the

closest. V 2 and V 4 are the closest you merge these 2 first.

So the first step what we do merge this sphere and generate a composite vertex called V

24. We repeat this process in the remaining graph you see which one is the closest this 7,

V 1 and V 24 merge these 2 so we get V 241. So in the remaining graph, well once you

see one thing once you merge V 1 and V 24, you get V 241. So the weight of the h

between V 24 and V 3 will be, this 1 plus 5 6. Because we have merged these 2 so the

number of connections between these 2 is now 6. So next one is 6 highest do this, then

remaining 4 so you finally, do this.

(Refer Slide Time: 19:35)

So, this sequence of vertices you are merging 2 4 then 1 then 6 3 then 3 then 5. So you

remember this sequence and you generate something called you can say clustering tree.

So initially you merge V 2 and V 4 to get a node V 24. Merge V 24 and V 1 get this in

this way. So once we have this tree, then you can take a decision you can cut this tree

any edge you cut, it will divide up into 2 parts, because you know a tree is a kind of a

graph where there is a unique path between 2 vertices. If you cut any edge it will divide

that it up into 2 parts.

(Refer Slide Time: 20:15)

Now, suppose if you have a tree like this. Let us say you have a tree like this. It is just

example I am giving. Suppose if I have a tree like this. So once you have a tree like this

suppose I want to divide it up into 3 parts. So what you can do I can make one cut here,

this you can see will divide the tree into 2 parts, so one is this part and the other will be

this part, next what I can do I can make another cut let us say, here this will break this up

into one cluster like this another cluster like this. So every time you cut an edge in this

tree you will get one more partition or cluster generated.

 so here also in this example let us say we want to divide into 2 parts we make a cut here

so you get one cluster comprising of V 2 V 4 and V 1, another cluster comprising of V 3

and V 5. Now this clusters will be such that the once which are more heavily connected

you are trying to keep them together right. So this is the basic idea.

(Refer Slide Time: 21:24)

Now, next, let us go to a very important class of algorithms this is called min cut

algorithm, that I am trying to keep this condition in mind that I am trying to do the

partitioning in such a way that the number of lines that are going across the partition is

minimized, which means.

(Refer Slide Time: 21:50)

Suppose I have a netlist like this. I am doing a partition like this. I have to see how many

signal lines are crossing. This is defined as the cut. So I have to minimize this size of the

cut that will be called a good partition.

So this Kernighan Lins algorithm that I am showing here, this is basically doing

something like this. And this is a bisection algorithm in the sense that the initial netlist is

partitioned into 2 subsets, which will be of equal sizes. The method is very simple here

we start with initial partition. Starting with initial partition we repeat iteratively the

process till the cut sets keep improving. So what I do we find out the pair of vertices on

from each of the partitions, whose exchange will result in a largest decrease in cut size.

Like you have 2 sets available with you, 2 sets of vertices which is your initial partition

you choose one vertex from this set one vertex from that set, you try to exchange them

and see how much improvement you get. You repeat this process for every pair of

vertices, and see at every step which pair gives you the best benefit or gain you choose

that pair of vertices to exchange.

So, once you find that pair of vertices, you lock this vertex. Lock means those vertices

will not participate in any further exchanges in the future, but if you see that no

improvements are possible by exchanging pairs of vertices, then you choose a pair of

vertex which gives the smallest increase in cost. So here also allowing some increase in

cost with the expectation that if you do this may be later on you will get a better solution.

So this is a very standard method of trying to avoid something called local minima.

There can be a solution space or there can be multiple minimum points. You try to avoid

from falling into the local minima, because there can be another minimum which is even

better. So sometimes you accept what solution with the expectation that you get a better

solution in the future, but here as you go on you remember at every step what is the best

solution you have seen so far.

(Refer Slide Time: 24:42)

So, let us take an example illustration. So I have a circuit like this which I want to

partition into 2 parts. So we construct a graph out of these gates, well here I take make an

assumption I assume that the thin edges have a weight of 1 and the thick edges have a

weight of 0.5. So let us say it is an assumption that I want that this weight to be less. Let

us start with an initial partition like this. So for initial partition if you just count the

number of vertices which are cut it is 1 2 3 4 thin edges and 3 thick edges. So the cost

will be 4 plus 1.5, 5.5. You pair wise check you try to exchange a and c a f a g a h then b

c b b f b g b h and so on you will find that exchanging c and d will give you the

maximum benefit. So this step is shown here. If you exchange c and d, c is brought here

and d is brought there, and this 2 vertices are shown shaded.

Now you see the cost has dropped down 1 2 3 4 thin edges and one thick edges. The cost

is 4.5. In the next step the vertices you are exchanging are g and b. Bring g here b

because here you again check the pair whose exchange will either give you the

maximum benefit or if you cannot get a benefit the minimum increase in cost. So it is g

b. So if you do this you will see that you get 1 2 3 4 5. 1 2 3 4 5 6 so the cost will be 6.

So, in a similar way you proceed. So in the next step you exchange this f, and you have

this you exchange this f and a bring f here a here, so the cost which is again increasing.

Then in the last step you exchange the remaining 2 you get this final one. Now in this

process we will see that, this cost is the minimum one you have seen so far.

(Refer Slide Time: 27:04)

So, you have written this a b c e in one partition. So you declare this as your final

partition a b c e in one the rest in the other. So this is basically what is Kernighan Lin by

partitioning algorithm. The drawback of this algorithm is that, this is not applicable to

hyper graph directly. Hyper graph means there are more than 2 nodes which are

connected together. That is called a hyper edge there is an edge connecting 3 vertices.

(Refer Slide Time: 27:35)

So, Kernighan Lin algorithm does not consider this hyper graph directly. This is one

drawback. And it cannot handle arbitrarily weighted graph, although the example that we

have seen has weight. So it can handle, but the calculation will be slightly more complex.

And the partition sizes must be known before end. The time complexity is high in terms

of the number of nodes there will be maximum n by 2 iterations, in every iteration there

will be order n square complexity of selecting the pair, so where all it will be order in

cube. It considers partitions of equal sizes balanced.

(Refer Slide Time: 28:35)

Now, this Kernighan Lin algorithm can be extended in several ways. Firstly, you can

consider unequal block sizes. Suppose I have a graph with 2n vertices, but I want to

partition it into 2 sub graphs, so not equal n and n, but n1 and n2, or n1 and n2 are not

equal.

 So it is something like this. I want to divide it into one part which is bigger.

(Refer Slide Time: 29:04)

Let us say there are n 1 vertices here, another partition which will be smaller there will

be n 2 vertices here. So here we proceed in a similar way, but if you can see if we had n

1 and n 2 here, for at every step the maximum number of exchanges that we can have,

maximum exchanges can only be n 2 here, because n 2 is smaller; after n 2 so all of these

n 2 nodes will be locked. So this will be the minimum of this n 1 and n 2. Since n 2 is

smaller it will be n 2.

So here you see so what we are doing we are dividing the node into 2 subsets containing

minimum of n 1 and n 2 maximum of n 1 n 2 vertices one smaller another larger. And

this is what I am saying at every step we are limiting the number of vertex exchanges to

the minimum of n 1 and n 2. Just this one change if you make then you will be able to

handle this unequal block sizes.

(Refer Slide Time: 30:14)

Another extension you can have is to handle unequal sized elements. Like so far we have

assumed that in the graph so all the vertices are similar they are connected you are

swapping exchanging vertices. So their cost will be the same, so that whichever pair you

are exchanging. But in general some vertex can indicate not a single gate, but a may be a

collection of 3 gates or 4 gates. So the sizes of each of the vertices can be different in

general. So in this second variation you are considering unequal sized elements. Here the

assumption is like this we assume that the smallest element has unit size. You replace

each element of a size s with s vertices which are fully connected. This is called a s-

clique with edges of infinite weight. So what I mean I am just explaining.

(Refer Slide Time: 31:15)

Suppose I have a graph like this. Let us say let us take a very small example. A 3 vertices

which are connected, a graph like this. Now these nodes are not equal the weight of this

is 3 the weight of this is 2 the weight of this is 1 let us. Say so what does this mean this 1

means this is a unit a edge it consists of a 1 gate let us say. This 2 means you replace this

by 2 vertices. 3 means you replace it by 3 vertices which are connected among

themselves. And this weight s of these edges you would take as very large. Why you are

taking very large? Because they will always remain together, they will always remain

together. So by doing this you create modified graph.

Here let us say if we just replace this by 3 and this by 2 then this will be connected to this

this will also be connected to this. This will be connected to this; this will also be

connected to this. This will be connected to this; this will also be connected to this. Like

this you make all such connections. You make all such connections you create a new

graph and you run this scale or Kernighan Lin algorithm again on that. So the infinite

edge pair of vertices they will always remain together which means those clusters which

are representing higher voltage they will always remain as single clusters. So, this is one

change you can make.

(Refer Slide Time: 32:53)

And of course, this is another important thing which will be discussing later that we can

also carry out with this partitioning with an eye towards performance. Because I have

already seen that on board delays are much large than on chip delays, typically within a

chip delays can be nanoseconds or fraction of nanoseconds, but on board across chips

delay can be as large as milliseconds, due to capacitive and resistive effects.

So, as I said earlier if a critical path gets cut many times, the delay can be an

unacceptably high. So for high performance systems your partitioning goals can be

different. Reducing cut size is of course; yes you have to minimize the delay in the

critical paths thereby satisfying the timing constraints.

So with this we come to the end of this lecture. So, we continuing with our discussion on

floor planning in the next lecture.

Thank you.

