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So, continuing with our discussion on VLSI physical design. In this second week we 

shall be looking at some of the, you can say initial steps of design automation at the 

backend design liable, namely we shall be looking at the problems of floor planning 

placement and of course, before that we need circuit partitioning. So we start our 

discussion with a lecture on partitioning which is usually the first step in this process. So 

let us first try to explain this scope of the partitioning problem and what does it involve. 
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So, when we talk about partitioning, we take any kind of a system design netlist, it can 

be a netlist at the level of gates at the level of transistors or in fact, any kind of modules 

and blocks. So when we say we are doing partitioning, we are essentially decomposing 

the system into smaller and more manageable subsystems. Such that each of the 

subsystems can be handled designed and laid out independently, but there are a few 

criteria that needs to be satisfied in this process, so while during the decomposition we 

have to care that the number of connections between these partitions or subsystems must 

be minimized. And this decomposition we can carry out hierarchically making the blocks 



smaller and smaller, until we reach a stage where each of the blocks can be handled and 

designed independently.  

So starting with a large system we continually go on partitioning it in smaller and smaller 

pieces, until we reach a stage where all the pieces are of manageable size. So, as the 

output of partitioning, we get the individual module netlists let us say there are n such 

modules and of course, how they are interconnected this we call as the interface 

information. 
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Let us look at the same example we had a look earlier. So we illustrate the problem of 

partitioning with respect to this gate level netlist that we are seeing here. So we have a 

circuit comprising of 48 gates so in this example we are illustrating how to divide it up 

into 3 clusters or partitions.  

Well, one of the obvious objective is that the partitions has to be roughly of the same size 

so in this case the sizes of the partitions are 15, 16 and 17. There is another requirement 

as I had mentioned the number of interconnection line as you can see, between the first 

and second partitions the number of interconnections are 4 and between second and third 

it is also 4. So the objective of minimizing the number of connections across partitions is 

also fairly satisfied. So this example shows roughly how a partition or the partitioning 

process should split a netlist into a smaller netlist. 



So, there are 2 criteria, number one the partitions need to be approximately of the same 

size and number 2, the number of connections between the partitions has to be 

approximately equal. 
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So, when we talk about partition this process can be carried out at different levels for 

example, when you design a system we can carry it out at the system level the whole 

system design we can partition into subsystems, but each of the subsystems can be 

possibly be mapped into a printed circuit board. Once we have a PCB or a board, then we 

can partition at the level of the board. So inside the board we can see that there can be a 

number of chips. And even inside a chip when you are designing a chip there can be a 

number of blocks or modules so a connection of them. 

So, you can say the partitioning can be done at the system level at the board level or even 

inside the chip at the chip level. And the point to note is that when you have a large 

system usually the total circuit is divided across a number of printed circuit boards 

whereby we get the system.  

The delays are important well if we are connecting 2 points inside a chip suppose the 

delay is X, but when you are going across chips between 2 chips within in a single board 

the delay can be roughly 10 times, but when we go across boards, it can be as large as 20 

times or even more. So you can see that the delay can be of the order of the magnitude 

higher as we go for you can say intra chip routing to intra boards and across boards. So it 



is important to ensure that the critical nets that we have they have to be put within the 

low delay regions as far as possible; that means, inside the chip it is preferable, if it not 

possible only then you can go across chips. 
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So, a simple illustration here, so, on the left we see board which consists of, this is a 

system, let us say system which consists of 2 boards. And each of this boards consist of 

some chips. So I am showing some connections so a connection between a block a inside 

this chip and A block B inside this chip this will incur a delay of 10X. Similarly, 

connection between this B here and C on the next board it can be 20X. So from A to C 

the total delay can be 10 plus 20, but suppose in an alternate mapping if we put A and B 

within the same partition, then the connection between A and B the delay can be only X. 

And also the C if you can put it on the same board then the delay between B and C can 

be B and C can be only 10. So instead of 30X here the delay between A and C becomes 

11X. So this shows you so how the critical nets or the higher delay parts can be put 

means inside a chip or within a board, so as to minimize the delay as much as possible. 

Now, one thing we should also remember, well we normally talk about the critical paths. 

The paths which take maximum time for signal to propagate; the critical paths typically 

determine the maximum frequency of operation of the circuit. Now the way we have said 

we are trying to break a critical path or refine a critical path by putting them into higher 

speed sections of the circuit. So that way our critical path can become of smaller sizes. 



But one thing you should also remember, well in doing this some of the other paths 

which were earlier inside the chip may go across the chip and their delay might increase 

in the process, some of the paths which were not critical earlier might become critical 

after this change or modification. 
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So, the partitioning problem, if we want to formulate, so we can say it like this, so we are 

given a netlist, we are wanting to partition this netlist into a set of smaller netlists with a 

number of these requirements to be satisfied. 

The number of connections between the partitions they have to be minimized, delay due 

to partitioning this I have just now mentioned the critical path delays this has to be 

minimized, at least the signal nets which are critical which determine the clock 

frequency. And each chip or board usually has a limit to the number of interconnecting 

terminates that you can have. So the number of terminates has to be within that 

maximum value limit. And of course, each of the partition should fit a chip or a board so 

it this can have some maximum upper bound in terms of the size or area. And also the 

total number of partitions that you are allowed to have that can also be specified, that you 

can have this many number of chips in which you can partition a whole design or this 

many number of boards not more than that, so these are the restrictions. 
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 so talking about the partitioning techniques, broadly the techniques can be classified as 

either constructive or something called iterative improvement. Constructive placement 

means we are starting with nothing we are starting with an empty partition, and we 

slowly add blocks or modules to create the partitions bigger and bigger in that way we 

allow the partitions to grow, but in other hand there is a second class of algorithms these 

are called iterative improvement. Here the idea is that we start with an initial partition we 

have several partitions already existing to start with, and as part of these algorithms we 

try to improve the quality of the partitions by making changes incrementally and 

iteratively on this given set of blocks and the partitioning. 
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So, let us look at some of these methods one by one. Well random selection is very 

simple. This says that you have a set of nodes. So you randomly select the nodes one at a 

time and you go on placing them into clusters of fixed size, until the proper size is 

reached. What does this mean? 
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Let us say suppose I have a requirement that inside a cluster I can have up to 10 blocks. 

And suppose I have a set of blocks to place, there are many such blocks. So what I do 

from this set I randomly pick one, I place. I randomly pick another, I place. I randomly 



pick another, place. In this way I continue till this limit of 10 is reached. So once this 10 

is reached I can say that my partition P 1 is done. Now I move to my next partition P 2. 

So in a similar way I again pick the blocks randomly I place them here, until my limit of 

10 is again reached. So my P 2 is done. Then I move to P 3, P 4 and so on. So this 

method you can see is very simple and pretty obvious. And quite naturally the way we 

were doing it. You were doing it entirely randomly. We were not looking at the property 

of the blocks the way they are connected and so on. So usually the quality of the 

partitions that are generated in this process is not so good. 

So we look at another method which is better in that respect, and we call it cluster 

growth. 
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Now, in the method of cluster growth what we do, we start with a single node and add 

other nodes to form partitions, but not randomly based on connectivity. And the number 

of clusters you want to divide that can also be in input parameter. So let us look into the 

outline of this algorithm which has been shown here. Here let us say that we have the set 

of nodes let us call it capital V. And m denotes the size of each cluster. So the number of 

partitions will be the size of V divide by m. So what you do for each partition for i equal 

to 1 to n, we repeat. So we initialize a variable seed as the vertex in this set of what is V 

which has the maximum degree. Degree means it is connected to maximum other blocks, 

the block which is maximally connected to other blocks.  



You select that vertex and let that vertex be my initial seed for that partition. I call it V i. 

V I denotes the ith partition. So once I select this one, I remove this seed from the 

original V I take it out. Then since the size of each cluster is m so I have to add this m 

minus 1 in fact, j less than m, this m minus 1 remaining vertices to V i. So what I do at 

every step I check and find out a vertex t, which is maximally connected to the vertices 

which are already there in V i. So what I do? We take the union of t with V i, and we 

take out this t from V repeatedly and once you complete this process this said V will be 

empty, and we get our just desired cluster. So this is one very simple method depending 

on the connectivity we try to create the clusters and we grow the clusters in size 

iteratively one by one. 
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Now let us move into some methods which are little more practical, in the sense that we 

have lot more flexibility. Here this classes of methods are called hierarchical clustering. 

So what they do they do something like this? You consider a set of modules or objects 

and group them depending on connectivity means closeness. Like suppose if there are 2 

blocks between which you said that there are 10 connections, they will always want 

those 2 blocks to remain together closer together. So this is the measure of closeness.  

The blocks which are more heavily connected they should be kept closer together this is 

the basic idea. So what you do we carry our cluster in a hierarchical way. The 2 closest 

objects in terms of the connectivity are clustered first, and once we do this this sphere of 



objects are merged and considered as a single object subsequently. And you repeat this 

process just one by one you try to select 2 vertices which are closest in my remaining 

netlist and you merge them together and you keep the information in which order you are 

merging the vertices, because you will be using this later to do the actual partitioning. 

So, you repeat this process, and you stop when subsequently a single cluster is generated 

and something called a hierarchical cluster tree has been formed, a cluster tree which 

indicates this sequence of object pairs which have been merged to generate the single 

cluster. So I am showing an example to illustrate. Then once you do this you can cut the 

tree to form 2 or more clusters. Well let us see how it is done. 
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Let us take an example like this. Where this 5 vertices indicate some small netlists or 

some basic elements there can be gate there can be small set of gates. And this numbers 

they indicate the number of connections or the closeness. This 9 indicates there are 9 

connections between V 2 and V 4. This 1 indicates there is one connection between V 2 

and V 3 and so on. Now once you do this, you see that which pair of vertices are the 

closest. V 2 and V 4 are the closest you merge these 2 first.  

So the first step what we do merge this sphere and generate a composite vertex called V 

24. We repeat this process in the remaining graph you see which one is the closest this 7, 

V 1 and V 24 merge these 2 so we get V 241. So in the remaining graph, well once you 

see one thing once you merge V 1 and V 24, you get V 241. So the weight of the h 



between V 24 and V 3 will be, this 1 plus 5 6. Because we have merged these 2 so the 

number of connections between these 2 is now 6. So next one is 6 highest do this, then 

remaining 4 so you finally, do this. 
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So, this sequence of vertices you are merging 2 4 then 1 then 6 3 then 3 then 5. So you 

remember this sequence and you generate something called you can say clustering tree. 

So initially you merge V 2 and V 4 to get a node V 24. Merge V 24 and V 1 get this in 

this way. So once we have this tree, then you can take a decision you can cut this tree 

any edge you cut, it will divide up into 2 parts, because you know a tree is a kind of a 

graph where there is a unique path between 2 vertices. If you cut any edge it will divide 

that it up into 2 parts. 
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Now, suppose if you have a tree like this. Let us say you have a tree like this. It is just 

example I am giving. Suppose if I have a tree like this. So once you have a tree like this 

suppose I want to divide it up into 3 parts. So what you can do I can make one cut here, 

this you can see will divide the tree into 2 parts, so one is this part and the other will be 

this part, next what I can do I can make another cut let us say, here this will break this up 

into one cluster like this another cluster like this. So every time you cut an edge in this 

tree you will get one more partition or cluster generated.  

 so here also in this example let us say we want to divide into 2 parts we make a cut here 

so you get one cluster comprising of V 2 V 4 and V 1, another cluster comprising of V 3 

and V 5. Now this clusters will be such that the once which are more heavily connected 

you are trying to keep them together right. So this is the basic idea. 
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Now, next, let us go to a very important class of algorithms this is called min cut 

algorithm, that I am trying to keep this condition in mind that I am trying to do the 

partitioning in such a way that the number of lines that are going across the partition is 

minimized, which means. 
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Suppose I have a netlist like this. I am doing a partition like this. I have to see how many 

signal lines are crossing. This is defined as the cut. So I have to minimize this size of the 

cut that will be called a good partition. 



So this Kernighan Lins algorithm that I am showing here, this is basically doing 

something like this. And this is a bisection algorithm in the sense that the initial netlist is 

partitioned into 2 subsets, which will be of equal sizes. The method is very simple here 

we start with initial partition. Starting with initial partition we repeat iteratively the 

process till the cut sets keep improving. So what I do we find out the pair of vertices on 

from each of the partitions, whose exchange will result in a largest decrease in cut size. 

Like you have 2 sets available with you, 2 sets of vertices which is your initial partition 

you choose one vertex from this set one vertex from that set, you try to exchange them 

and see how much improvement you get. You repeat this process for every pair of 

vertices, and see at every step which pair gives you the best benefit or gain you choose 

that pair of vertices to exchange. 

So, once you find that pair of vertices, you lock this vertex. Lock means those vertices 

will not participate in any further exchanges in the future, but if you see that no 

improvements are possible by exchanging pairs of vertices, then you choose a pair of 

vertex which gives the smallest increase in cost. So here also allowing some increase in 

cost with the expectation that if you do this may be later on you will get a better solution. 

So this is a very standard method of trying to avoid something called local minima. 

There can be a solution space or there can be multiple minimum points. You try to avoid 

from falling into the local minima, because there can be another minimum which is even 

better. So sometimes you accept what solution with the expectation that you get a better 

solution in the future, but here as you go on you remember at every step what is the best 

solution you have seen so far. 
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So, let us take an example illustration. So I have a circuit like this which I want to 

partition into 2 parts. So we construct a graph out of these gates, well here I take make an 

assumption I assume that the thin edges have a weight of 1 and the thick edges have a 

weight of 0.5. So let us say it is an assumption that I want that this weight to be less. Let 

us start with an initial partition like this. So for initial partition if you just count the 

number of vertices which are cut it is 1 2 3 4 thin edges and 3 thick edges. So the cost 

will be 4 plus 1.5, 5.5. You pair wise check you try to exchange a and c a f a g a h then b 

c b b f b g b h and so on you will find that exchanging c and d will give you the 

maximum benefit. So this step is shown here. If you exchange c and d, c is brought here 

and d is brought there, and this 2 vertices are shown shaded.  

Now you see the cost has dropped down 1 2 3 4 thin edges and one thick edges. The cost 

is 4.5. In the next step the vertices you are exchanging are g and b. Bring g here b 

because here you again check the pair whose exchange will either give you the 

maximum benefit or if you cannot get a benefit the minimum increase in cost. So it is g 

b. So if you do this you will see that you get 1 2 3 4 5. 1 2 3 4 5 6 so the cost will be 6.  

So, in a similar way you proceed. So in the next step you exchange this f, and you have 

this you exchange this f and a bring f here a here, so the cost which is again increasing. 

Then in the last step you exchange the remaining 2 you get this final one. Now in this 

process we will see that, this cost is the minimum one you have seen so far. 
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So, you have written this a b c e in one partition. So you declare this as your final 

partition a b c e in one the rest in the other. So this is basically what is Kernighan Lin by 

partitioning algorithm. The drawback of this algorithm is that, this is not applicable to 

hyper graph directly. Hyper graph means there are more than 2 nodes which are 

connected together. That is called a hyper edge there is an edge connecting 3 vertices. 
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So, Kernighan Lin algorithm does not consider this hyper graph directly. This is one 

drawback. And it cannot handle arbitrarily weighted graph, although the example that we 



have seen has weight. So it can handle, but the calculation will be slightly more complex. 

And the partition sizes must be known before end. The time complexity is high in terms 

of the number of nodes there will be maximum n by 2 iterations, in every iteration there 

will be order n square complexity of selecting the pair, so where all it will be order in 

cube. It considers partitions of equal sizes balanced. 
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Now, this Kernighan Lin algorithm can be extended in several ways. Firstly, you can 

consider unequal block sizes. Suppose I have a graph with 2n vertices, but I want to 

partition it into 2 sub graphs, so not equal n and n, but n1 and n2, or n1 and n2 are not 

equal.  

 So it is something like this. I want to divide it into one part which is bigger. 
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Let us say there are n 1 vertices here, another partition which will be smaller there will 

be n 2 vertices here. So here we proceed in a similar way, but if you can see if we had n 

1 and n 2 here, for at every step the maximum number of exchanges that we can have, 

maximum exchanges can only be n 2 here, because n 2 is smaller; after n 2 so all of these 

n 2 nodes will be locked. So this will be the minimum of this n 1 and n 2. Since n 2 is 

smaller it will be n 2.  

So here you see so what we are doing we are dividing the node into 2 subsets containing 

minimum of n 1 and n 2 maximum of n 1 n 2 vertices one smaller another larger. And 

this is what I am saying at every step we are limiting the number of vertex exchanges to 

the minimum of n 1 and n 2. Just this one change if you make then you will be able to 

handle this unequal block sizes. 
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Another extension you can have is to handle unequal sized elements. Like so far we have 

assumed that in the graph so all the vertices are similar they are connected you are 

swapping exchanging vertices. So their cost will be the same, so that whichever pair you 

are exchanging. But in general some vertex can indicate not a single gate, but a may be a 

collection of 3 gates or 4 gates. So the sizes of each of the vertices can be different in 

general. So in this second variation you are considering unequal sized elements. Here the 

assumption is like this we assume that the smallest element has unit size. You replace 

each element of a size s with s vertices which are fully connected. This is called a s-

clique with edges of infinite weight. So what I mean I am just explaining. 
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Suppose I have a graph like this. Let us say let us take a very small example. A 3 vertices 

which are connected, a graph like this. Now these nodes are not equal the weight of this 

is 3 the weight of this is 2 the weight of this is 1 let us. Say so what does this mean this 1 

means this is a unit a edge it consists of a 1 gate let us say. This 2 means you replace this 

by 2 vertices. 3 means you replace it by 3 vertices which are connected among 

themselves. And this weight s of these edges you would take as very large. Why you are 

taking very large? Because they will always remain together, they will always remain 

together. So by doing this you create modified graph. 

Here let us say if we just replace this by 3 and this by 2 then this will be connected to this 

this will also be connected to this. This will be connected to this; this will also be 

connected to this. This will be connected to this; this will also be connected to this. Like 

this you make all such connections. You make all such connections you create a new 

graph and you run this scale or Kernighan Lin algorithm again on that. So the infinite 

edge pair of vertices they will always remain together which means those clusters which 

are representing higher voltage they will always remain as single clusters. So, this is one 

change you can make. 
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And of course, this is another important thing which will be discussing later that we can 

also carry out with this partitioning with an eye towards performance. Because I have 

already seen that on board delays are much large than on chip delays, typically within a 

chip delays can be nanoseconds or fraction of nanoseconds, but on board across chips 

delay can be as large as milliseconds, due to capacitive and resistive effects. 

So, as I said earlier if a critical path gets cut many times, the delay can be an 

unacceptably high. So for high performance systems your partitioning goals can be 

different. Reducing cut size is of course; yes you have to minimize the delay in the 

critical paths thereby satisfying the timing constraints.  

So with this we come to the end of this lecture. So, we continuing with our discussion on 

floor planning in the next lecture. 

Thank you. 


