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Lecture – 56 

Built-in Self-Test (Part 1) 

 

Now, we talk about built in self test. So, technique fair by chip can test itself, let see this 

salient features what are the requirements and then you shall see how we can achieve this 

to some extent, we cannot do as good as external testing, but what best we can do let see 

that. 
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So, the basic concept behind built in self test is to add some additional hardware inside 

the chip, such that test generation and response evaluation can be done inside. 
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Let us see what is the conventional approach, what we do? The conventional approach is 

that I am just trying to show it diagrammatically here. So, I have a circuit under test 

CUT, I have a functional specification there are inputs there are outputs. 

So, what I do? I use tool first, I use a test generation tool where just as the input I shall be 

providing with this circuit net list let say or this some kind of specification, as I test 

generation tool will give me a set of test directors T. Now this is done once, now once 

the circuits are manufactured what we do is, we use something called an automated test 

equipment or ATE, we load the test patterns in the ATE memory and ATE will be 

generating this inputs to this chip which will be setting on the ATE, and similarly the 

outputs will be fed here. 

So, ATE will be in control of applying the test patterns and evaluating response, and the 

point you notice that this ATE is an extremely expensive equipment well although we 

use it, but the total cost of manufacturing also has a component which is the cost of the 

ATE. So, this is the more conventional approach, but here our test generation and 

response evaluation both we are doing inside the chip itself. So, we are not relying on an 

external test generator to generator the test may be you are something or some external 

ATE to apply the test. Naturally to do this on chip we need additional hardware. So, 

suppose we have implemented this kind of extra facility inside the chips so that it can 

test itself BIST. 



So, to control the BIST operation we need minimum of 2 pins. So, there will be 1 pin 

which you will a test control, so here will be telling the chip that well now you test 

yourself, that pin if activated will cause the chip to start the testing and that will happen 

internally only with no external intervention, and once the testing is over there will be a 

output pin saying good or bad it will tell that well, I am good or I am bad. So, BIST 

normally will not tell anything more than that it will just tell either chip is working good, 

or there is something wrong that has been detected. 
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So, this is how now the insider of my chip will look like, earlier we had only our circuits 

under test, but now we have a test generator we have a response compactor, we shall 

come to this a little later why we need this; and externally as I said we need one control 

signal to start or activate the BIST operation, and we need one control signal to evaluate 

the result of the test, all right. 
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Lets now look at the motivation, why do we need BIST and what are the advantages? We 

first one I already mentioned that we do not need an expensive automated test 

equipment. You see this ATE is very sophisticated equipment; it is bulky equipment it 

has to be installed in a very controlled environment. So, when you want to test the chip 

we have to go near the ATE, put it on the ATE and ATE will be just applying the test 

vectors and test it. But now if you have BIST feature in a chip, it is not necessarily to go 

to the ATE to test the chip, you can even test it in your lap that is your field. 

So, can be used for field test, diagnosis means you are trying to identify which chip is 

bad diagnosis is the identification of the source of failure. So, normally in a system we 

use something called software tests; like you might of seen in a desktop or a laptop when 

you turn on the machine for the first time, there is a software diagnostic is starts running 

that is a software program. So, it does some rooting checks it checks memory etcetera, 

and if it finds that something is wrong with reports with a code. So, we will have to 

decode what that code means to identify what or which sub system is not working 

correctly right. 

Now, BIST can be an alternative to this kind of software tests, but the software tests with 

the problem is typically software tests they carry out testing in a very loose and abstract 

way, the fault coverage in terms of the hardware is pretty low the diagnostic resolution is 

also pretty low. Sometimes you shall only say that there is a fault on the mother board of 



your PC, but where is the mother board that it does not say and also because it is a 

software program which is running, it will be more time consuming. But in BIST we are 

trying to do this in hardware, and if you do this the advantages are of course, be test 

effort will be lower because the time taken will be less, diagnosis will be better because 

chips at the chip level you can do the testing and since you can do it on field, your 

system maintenance and repairing costs will be also much less. 

So, instead of every time there is a field will have to go to one place to find out the 

source of the fault, you can do it in your own small lab also fine. 
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Now, the BIST architecture over all it looks like this. So, I have my circuit under test 

which I want to test. So, what are the components I need? So, this whole picture to 

something that goes inside the chip of course, I need a pattern generator. So, which will 

be generating my test patterns, now I can argue that well I have very good test generator 

it can generate some very good small set of test patterns, let me keep it in a ROM and let 

the ROM be inside the chip. But it is possible, but the over rate of that ROM will be 

much higher, from circuits you may find that you need 1000 test vectors. So, you need a 

ROM with 1000 words just to stored that right and of course, they access time of the 

ROM will be slower as compare to hardware. 

So, typically what is done this pattern generator is some kind of a hardware structure 

which can run very fast and generate some patterns which will be use for testing. So, this 



multiplexor will be selecting whether I mean you are in the normal mode of operation 

where this primary input should go in or you are in the test mode where this pattern 

should go in. Similarly here in the normal mode the output of the circuit will go to the 

PO the primary inputs, but during the test mode you have something called a response 

compactor inside the chip. Let me just explain this, well I means again let us argue that I 

am applying 1000 test patterns to a circuit there are 10 output lines. 

So, I will be generating 1000 bits of information and each of this 10 output lines 

corresponding to the 1000 test vectors. So, I will be having how many 1000 each there 

are 10 such line. So, it will be 10 kilobytes of data then you have 100 kilobytes of data 

sorry sorry 10, 10 lines in to 1000 yes 10 kilobytes of data. So, what you can argue is 

that well I will store these 10 kilobytes of expected response again in a ROM, and when 

the test is going on I will compare them bit by bit, but the here again I will say that was 

you can do it definitely, but your average will be become too much. If you are saying 

that you will be using a ROM to store your input vector to store your output response, 

you need ROM of a very large capacity large size; because for a modern this circuits, 

circuits let say you made a requiring millions of test vectors and in the circuit there can 

be 100 of outputs. So, the volume of test data that you need to store can be pretty huge 

ok. 

So, you need something called a response compactor we shall come to this, that will you 

reduce the volume of the test data to a relatively small volume and you can use a small 

ROM to store the correct response for that small value after compaction. So, after 

compaction you compare with the compacted response with the corresponding golden 

value that is stored in the rom. So, if they match you say that your test has passed it is 

good, if it fails you say it is bad. But there are few things you see in this circuit there are 

few things which the BIST is not checking like connection from P I to the multiplex, it is 

only testing the pattern generation to circuit and circuit to response compactor, but this P 

I connection PO connection if there is any fault here this paths are not tested. So, this has 

to be remembered. 



(Refer Slide Time: 12:14) 

 

Now, random pattern testing is a very important and interesting concept. So, far what we 

have said and seen we said that we have a circuit, we have a set of false let us try to find 

out a nice small set of false that can detect. We also said the test generation is complex 

and it takes time particularly for larger circuits. Now there is an alternative, here we say 

that we just forget test pattern generation, we do not use a test pattern generator at all let 

us use some kind of random patterns well, random patterns means they will be purely 

random patterns, but what you generate are actually pseudo random patterns. 

Pseudo random pattern means patterns which can be repeated in time, and this pseudo 

random patterns are typically generated using a hardware structure, which is called linear 

feedback shift register or LFSR. So, what we can do we can use an LFSR it is a very 

simple hardware structure or say we can generate 1000 random patterns and using fault 

simulation, we can find out that using those 1000 test patterns random patterns what is 

the fault coverage, how may percentage of faults getting detected. So, if you see that our 

fault coverage has reached an acceptable value, we can say that well let us use this many 

patterns I am giving example suppose we find that your desirable level is reached only 

after applying 1 million test patterns. 

You see for a conventional test generation this 1 million was a very large number, 

because 1 million patterns have to be generated stores somewhere, in ATE we will have 

to load this pattern in ATE memory, but here I have a LFSR which will be simply 



running for 1 million clock cycles, there is nothing to store anywhere right. And say 

means if I use a clock frequency of 1 gigahertz, then this 1 million pattern will take only 

1 millisecond of time to have to operate right. So, here time is also not that much of an 

issue. So, you need to you need to seems or (Refer Time: 14:49) this also. So, the test 

length can be larger, but the test generation is very trivial and we can continue until 

either we reach a desired level of fault coverage. 

But sometimes it is not applicable to BIST, we can see that beyond a point we are not 

able to detect false anymore then for the remaining falls you can switch to an ATPG tool, 

but for BIST application we do not do this we do pure random pattern testing usually. 
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So, the behavior of typical circuits is like this. So, as I go and applying number of pseudo 

random test patterns, these are the number of test vectors and applying pseudo random, 

so through fall simulation I am continuously monitoring the fault coverage with typical 

curve is like this. So, it will go on rapidly increasing, but beyond the point it will now a 

less level of. So, if you can identify this point, then you can say that well this is my 

optimum number of test vectors I will apply so many. 

Now, this number will depend vary from circuit to circuit. So for a given circuit, so this 

using for simulation we will have to find out the value, right. 
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Now, let us see, what is the linear feedback shift register; now LFSR is as then an 

implied it is some kind of a shift register, it is hardware circuit based on a shift register 

there is a feedback circuit also and the feedback circuit is linear feedback. Here we are 

not going in to the mathematical detail, this feed circuit consist of exclusive OR gate and 

XOR function can be proved to be a linear function that is why it is called linear 

feedback. And LFSR such been found to be very good source of pseudo random patterns, 

and has been used in many applications. Random number generation is of course, one 

application, but many of you may have heard of cyclic redundancy check which is used 

for error checking, for communication when you store some data on hard disks 

everywhere there can be errors. 

CRC is a very common and popular way to detect errors and here again we use an LFSR 

to generate some kind of a CRC check some or signature. And we will see later that 

where we talk about the compaction of the responses, there also again we can use a 

LFSR this we will see later. 
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So, how does an LFSR look like? So, there are 2 alternate structures of an LFSR, type 

one or type 2. Type one is the classical structure where you can identify the feedback this 

is an XOR gate, you see D1, D2, D3, D4 or these are flip flops connected as a shift 

register these are D flip flops. So, the output of the last flip flop is fed back in to the 

input of this XOR, and some other output like here D1 is also fed as the input of XOR. 

So, here I have a choice I can use this I can take from D2, D2 D3 are all of them together 

and output of the shift register is fed as the input to the first flip flop. 

So, you see this LFSR does not have an external input. So, once you low D2 the initial 

value and apply the clock, it will go and running in an autonomous fashion it will be 

generating some patterns continuously. So, there is an alternate structure of LFSR which 

is used more commonly for data compaction, where instead of using XOR in the 

feedback circuit, we do like this we use the feedback directly, but we can use this XOR 

gates somewhere in between and whenever you use XOR gate you also take one of the 

inputs from this line. So, there can be an XOR gate here, so, one input will come from 

here, one input from here like this. So, this is called type-1 LFSR, type-2 LFSR. 
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So, let us take the example of a generating a pattern using an LFSR. So, let us take type 1 

LFSR like this, where I have 4 flip flops 4 bit LFSR the feedback connection is like this 

from D4 and from D1 the output of the XOR is fed to D 1. Now the behavior of an LFSR 

will depend quite a lot on the points from where you are taking the feedback connection. 

Now this feedback connection are the structure of this LFSR can be defined by 

something called the characteristic polynomial, like this particular for LFSR is 

represented or characterized by this polynomial, where does this mean? You see x to the 

power 4 x is a parameter, x to the power 4 represents this, x to the power 4 x to the 

power 3, x to the power 2 x to the power 1 and x to the power 0. 

So, here we have a connection from x to the power 4 and x to the power 1 that is why 

these 2 terms are there, and 1 will also be there because you are connecting to x to the 

power 0. So, if instead of this there is a connection from here, then instead of x 2 a 1 it 

should be x to the power 2, x square if there is a connection form here it will have been x 

cube. So, depending on your typing points from where your connecting to the input of 

the exclusive or your characteristic polynomial will vary this is called characteristic 

polynomial. 

Now, let us see the patterns which are generated this D1 should be here; D4, D3, D2, D 

1. Suppose we are initializing the LFSR with 1 0 0 0, 1 0 0 0. So, as we apply clock there 

will be a shifting and a new bit will be getting in which will be the XOR of D4 and D 1. 



So, this is D1 and this D4 right. So, you go and shifting like this D4 and D 1, 0 and only 

1. So, next time we shift it this 1 will get shifted in D 1, next 1 and 0 you shift again 1 

will be shifted. So, 1 1 1 and 0 again 1, 1 will be shifted 1 1 1 again 1 0, again 1 will be 

shifted, but now 1 and 1 0 XOR is 0. So, now, 0 will be shifted 1 and 0 again 1 will be 

shifted like this. 

You see as you go and applying clocks, you will see some patterns have been generated 

and after certain number this 1 0 0 0 is repeating. So, again after 1 0 0 this same pattern 

will come again. So, let us count the pattern 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 patterns 

have been generated. 15 patterns is generated before repeating. So, can you guess which 

pattern is missing here? The all 0 pattern is missing, you see for LFSR the all 0 pattern 

has very you can say dangerous implication, like once you load this LFSR with all 0 

pattern it will remain in the all 0 state, because XOR of 0 and 0 will be 0, 0 will be 

shifted. So, right shift and 0 comes in. So, it will remain or 0. 

So, whenever we are one thing to LFSR for a data generation application, we should 

never load it with all 0 and this is very good kind of LFSR we have chosen because we 

are able to generate all the other 15 patterns accepting 0. And if you look at the decibel 

equivalent of this numbers 8 1 0 0 0 is 8, 1, 3, 7, 15, 14, 12, 10, 5 then 11, 6 or so on 

these numbers look random. Now there are some standard tests for randomness. So, 

develop evaluated the patterns which I generated by LFSR with respect to randomness, 

and it is in found that the randomness quality is pretty good other than one test which 

fails, the other tests pass quite satisfactorily. 

So, even if you want serial bit pattern you take the output of any of the flip flop, this is 

also random 0 1 1 1, and 0 1, 0 1 1, and 0 0 1, 1 0 1 this is also random pattern you can 

either take a parallel pattern as random or serially you can take one the output of any one 

of the flip flop right, but only one test as I said which is not satisfied with respect to 

random this is that, because the basic structure is a shift register you will see there is a 

pattern diagonally 0 0 0 0 these are getting shifted 1 1 1 1. So, these are getting shifted 

right. So, this is called cross correlation among the different bits, this is one property 

where it fails. 
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Now, some definitions of LFSR; now we have taken in this example 4 bit LFSR and we 

had seen that we has generated 15 patterns. So, in general for an n bit or n-stage LFSR, 

so we can have at most 2 to the power n minus 1 pattern generated. Such a sequence 

generated by an LFSR, where all the patterns other than the all 0 pattern are getting 

generated that is called maximum-length sequence or m-sequence. Now the 

characteristic polynomial you like in this LFSR the tapping points they define the 

characteristic polynomial. So, the characteristic polynomial which generates and m 

sequence is called a primitive polynomial. 

Now, for this example this was primitive polynomial that is why 15 patterns were 

generated. So, this, another definition that means, irreducible polynomial is a polynomial 

which cannot be factored, now primitive polynomial is a type of irreducible polynomial. 

So, there are ways to identify this kind of primitive polynomials. 
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There are comprehensive lists of these primitive polynomials available in various places. 

so I am showing you a few. These number indicates the number of flip flops; that means, 

number of stages in the LFSR, and these is kind of a coding from where you are taking 

the tap, 3 1 0 means you are taking the tap of course, from the last stage 3 will be there 

and from 1 and 0. So, the polynomial will be x cube plus x plus 1, for 4; x 4, x plus 1 

similarly for 16 this 32 this 64. So, you see. So, if you take 32 bit LFSR with a primitive 

polynomial like this; that means, there will be these many tapping points, then you can 

have a circuit which can generate 2 to the power 32 minus 1 pattern; that means, 4 billion 

patterns. We have a very convenient circuit which can generate 4 billion random patterns 

ok so it is a big advantage. 
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So, this m sequences also have some interesting properties like as I said firstly, the 

period before it repeats is 2 to the power n minus 1; that means, the bit a p plus i will be 

equal to a i for p equal to n minus 1, it repeats after p. Starting from any non 0 state, the 

LFSR will go through all the other 2 to the power n minus 1 states before repeating this 

we have already seen. Number of once differ from number of zeros by 1. So, be if you 

look at the output column for any of the bits, see for a normal truth table where you have 

all 2 to the power n, number of zeros are once are equal. Now here we do not have the all 

0 pattern, so now, zeros will be 1 less right? So, number of once will exceed number of 

zeros by 1, and here there is some other properties also which are not very important in 

the present the context. 

Like if you slide a window of slide of with n across sequence of bits generated, then each 

of the pat binary patterns will be seen exactly once in a period, like what I mean is that 

like you look at this if you slide window of with 4 like a 0 1 1 1, then 1 1 1 1, then 1 1 1 

0, 1 1 0 1, 1 0 1 0. So, these will be appearing exactly once and uniquely. 
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Now, of course, there is some other property where it runs, so here we are not wanting it. 

Now randomness properties of m-sequence is something which you are interested about 

here, because m sequences have very good pseudo - randomness properties; the auto 

correlation cross co relation is 0, but cross co relation between 2 output bits 2 

consecutive output bits is poor as you have said because of the shift register connection. 

So, in a typical test environment like BIST, we can generate as many patterns we 

required. If I say that I need 1 billion patterns fine I can do that. So, I means with a 1 

gigahertz clock I need only 1 7 to apply the test, and the good thing is that we are able to 

test that the maximum clock speed this is called at speed testing. Where some faults 

which also arise because of delays in the circuit the critical timings they will also get 

detected. In scan designs we often we are not detecting such kind of falls.  

So, with this we come to the end of this lecture in our next lecture, we shall be looking at 

the other part of BIST. So, we have seen the test generation part, but now after we have 

obtain the responses how do I compact and compare that part will be seeing in the next 

lecture. 

Thank you. 


