
VLSI Physical Design

Prof. Indranil Sengupta

Department of Computer Science and Engineering

Indian Institute of Technology, Kharagpur

Lecture – 56

Built-in Self-Test (Part 1)

Now, we talk about built in self test. So, technique fair by chip can test itself, let see this

salient features what are the requirements and then you shall see how we can achieve this

to some extent, we cannot do as good as external testing, but what best we can do let see

that.

(Refer Slide Time: 00:40)

So, the basic concept behind built in self test is to add some additional hardware inside

the chip, such that test generation and response evaluation can be done inside.

(Refer Slide Time: 01:09)

Let us see what is the conventional approach, what we do? The conventional approach is

that I am just trying to show it diagrammatically here. So, I have a circuit under test

CUT, I have a functional specification there are inputs there are outputs.

So, what I do? I use tool first, I use a test generation tool where just as the input I shall be

providing with this circuit net list let say or this some kind of specification, as I test

generation tool will give me a set of test directors T. Now this is done once, now once

the circuits are manufactured what we do is, we use something called an automated test

equipment or ATE, we load the test patterns in the ATE memory and ATE will be

generating this inputs to this chip which will be setting on the ATE, and similarly the

outputs will be fed here.

So, ATE will be in control of applying the test patterns and evaluating response, and the

point you notice that this ATE is an extremely expensive equipment well although we

use it, but the total cost of manufacturing also has a component which is the cost of the

ATE. So, this is the more conventional approach, but here our test generation and

response evaluation both we are doing inside the chip itself. So, we are not relying on an

external test generator to generator the test may be you are something or some external

ATE to apply the test. Naturally to do this on chip we need additional hardware. So,

suppose we have implemented this kind of extra facility inside the chips so that it can

test itself BIST.

So, to control the BIST operation we need minimum of 2 pins. So, there will be 1 pin

which you will a test control, so here will be telling the chip that well now you test

yourself, that pin if activated will cause the chip to start the testing and that will happen

internally only with no external intervention, and once the testing is over there will be a

output pin saying good or bad it will tell that well, I am good or I am bad. So, BIST

normally will not tell anything more than that it will just tell either chip is working good,

or there is something wrong that has been detected.

(Refer Slide Time: 04:21)

So, this is how now the insider of my chip will look like, earlier we had only our circuits

under test, but now we have a test generator we have a response compactor, we shall

come to this a little later why we need this; and externally as I said we need one control

signal to start or activate the BIST operation, and we need one control signal to evaluate

the result of the test, all right.

(Refer Slide Time: 04:57)

Lets now look at the motivation, why do we need BIST and what are the advantages? We

first one I already mentioned that we do not need an expensive automated test

equipment. You see this ATE is very sophisticated equipment; it is bulky equipment it

has to be installed in a very controlled environment. So, when you want to test the chip

we have to go near the ATE, put it on the ATE and ATE will be just applying the test

vectors and test it. But now if you have BIST feature in a chip, it is not necessarily to go

to the ATE to test the chip, you can even test it in your lap that is your field.

So, can be used for field test, diagnosis means you are trying to identify which chip is

bad diagnosis is the identification of the source of failure. So, normally in a system we

use something called software tests; like you might of seen in a desktop or a laptop when

you turn on the machine for the first time, there is a software diagnostic is starts running

that is a software program. So, it does some rooting checks it checks memory etcetera,

and if it finds that something is wrong with reports with a code. So, we will have to

decode what that code means to identify what or which sub system is not working

correctly right.

Now, BIST can be an alternative to this kind of software tests, but the software tests with

the problem is typically software tests they carry out testing in a very loose and abstract

way, the fault coverage in terms of the hardware is pretty low the diagnostic resolution is

also pretty low. Sometimes you shall only say that there is a fault on the mother board of

your PC, but where is the mother board that it does not say and also because it is a

software program which is running, it will be more time consuming. But in BIST we are

trying to do this in hardware, and if you do this the advantages are of course, be test

effort will be lower because the time taken will be less, diagnosis will be better because

chips at the chip level you can do the testing and since you can do it on field, your

system maintenance and repairing costs will be also much less.

So, instead of every time there is a field will have to go to one place to find out the

source of the fault, you can do it in your own small lab also fine.

(Refer Slide Time: 07:54)

Now, the BIST architecture over all it looks like this. So, I have my circuit under test

which I want to test. So, what are the components I need? So, this whole picture to

something that goes inside the chip of course, I need a pattern generator. So, which will

be generating my test patterns, now I can argue that well I have very good test generator

it can generate some very good small set of test patterns, let me keep it in a ROM and let

the ROM be inside the chip. But it is possible, but the over rate of that ROM will be

much higher, from circuits you may find that you need 1000 test vectors. So, you need a

ROM with 1000 words just to stored that right and of course, they access time of the

ROM will be slower as compare to hardware.

So, typically what is done this pattern generator is some kind of a hardware structure

which can run very fast and generate some patterns which will be use for testing. So, this

multiplexor will be selecting whether I mean you are in the normal mode of operation

where this primary input should go in or you are in the test mode where this pattern

should go in. Similarly here in the normal mode the output of the circuit will go to the

PO the primary inputs, but during the test mode you have something called a response

compactor inside the chip. Let me just explain this, well I means again let us argue that I

am applying 1000 test patterns to a circuit there are 10 output lines.

So, I will be generating 1000 bits of information and each of this 10 output lines

corresponding to the 1000 test vectors. So, I will be having how many 1000 each there

are 10 such line. So, it will be 10 kilobytes of data then you have 100 kilobytes of data

sorry sorry 10, 10 lines in to 1000 yes 10 kilobytes of data. So, what you can argue is

that well I will store these 10 kilobytes of expected response again in a ROM, and when

the test is going on I will compare them bit by bit, but the here again I will say that was

you can do it definitely, but your average will be become too much. If you are saying

that you will be using a ROM to store your input vector to store your output response,

you need ROM of a very large capacity large size; because for a modern this circuits,

circuits let say you made a requiring millions of test vectors and in the circuit there can

be 100 of outputs. So, the volume of test data that you need to store can be pretty huge

ok.

So, you need something called a response compactor we shall come to this, that will you

reduce the volume of the test data to a relatively small volume and you can use a small

ROM to store the correct response for that small value after compaction. So, after

compaction you compare with the compacted response with the corresponding golden

value that is stored in the rom. So, if they match you say that your test has passed it is

good, if it fails you say it is bad. But there are few things you see in this circuit there are

few things which the BIST is not checking like connection from P I to the multiplex, it is

only testing the pattern generation to circuit and circuit to response compactor, but this P

I connection PO connection if there is any fault here this paths are not tested. So, this has

to be remembered.

(Refer Slide Time: 12:14)

Now, random pattern testing is a very important and interesting concept. So, far what we

have said and seen we said that we have a circuit, we have a set of false let us try to find

out a nice small set of false that can detect. We also said the test generation is complex

and it takes time particularly for larger circuits. Now there is an alternative, here we say

that we just forget test pattern generation, we do not use a test pattern generator at all let

us use some kind of random patterns well, random patterns means they will be purely

random patterns, but what you generate are actually pseudo random patterns.

Pseudo random pattern means patterns which can be repeated in time, and this pseudo

random patterns are typically generated using a hardware structure, which is called linear

feedback shift register or LFSR. So, what we can do we can use an LFSR it is a very

simple hardware structure or say we can generate 1000 random patterns and using fault

simulation, we can find out that using those 1000 test patterns random patterns what is

the fault coverage, how may percentage of faults getting detected. So, if you see that our

fault coverage has reached an acceptable value, we can say that well let us use this many

patterns I am giving example suppose we find that your desirable level is reached only

after applying 1 million test patterns.

You see for a conventional test generation this 1 million was a very large number,

because 1 million patterns have to be generated stores somewhere, in ATE we will have

to load this pattern in ATE memory, but here I have a LFSR which will be simply

running for 1 million clock cycles, there is nothing to store anywhere right. And say

means if I use a clock frequency of 1 gigahertz, then this 1 million pattern will take only

1 millisecond of time to have to operate right. So, here time is also not that much of an

issue. So, you need to you need to seems or (Refer Time: 14:49) this also. So, the test

length can be larger, but the test generation is very trivial and we can continue until

either we reach a desired level of fault coverage.

But sometimes it is not applicable to BIST, we can see that beyond a point we are not

able to detect false anymore then for the remaining falls you can switch to an ATPG tool,

but for BIST application we do not do this we do pure random pattern testing usually.

(Refer Slide Time: 15:22)

So, the behavior of typical circuits is like this. So, as I go and applying number of pseudo

random test patterns, these are the number of test vectors and applying pseudo random,

so through fall simulation I am continuously monitoring the fault coverage with typical

curve is like this. So, it will go on rapidly increasing, but beyond the point it will now a

less level of. So, if you can identify this point, then you can say that well this is my

optimum number of test vectors I will apply so many.

Now, this number will depend vary from circuit to circuit. So for a given circuit, so this

using for simulation we will have to find out the value, right.

(Refer Slide Time: 16:07)

Now, let us see, what is the linear feedback shift register; now LFSR is as then an

implied it is some kind of a shift register, it is hardware circuit based on a shift register

there is a feedback circuit also and the feedback circuit is linear feedback. Here we are

not going in to the mathematical detail, this feed circuit consist of exclusive OR gate and

XOR function can be proved to be a linear function that is why it is called linear

feedback. And LFSR such been found to be very good source of pseudo random patterns,

and has been used in many applications. Random number generation is of course, one

application, but many of you may have heard of cyclic redundancy check which is used

for error checking, for communication when you store some data on hard disks

everywhere there can be errors.

CRC is a very common and popular way to detect errors and here again we use an LFSR

to generate some kind of a CRC check some or signature. And we will see later that

where we talk about the compaction of the responses, there also again we can use a

LFSR this we will see later.

(Refer Slide Time: 17:37)

So, how does an LFSR look like? So, there are 2 alternate structures of an LFSR, type

one or type 2. Type one is the classical structure where you can identify the feedback this

is an XOR gate, you see D1, D2, D3, D4 or these are flip flops connected as a shift

register these are D flip flops. So, the output of the last flip flop is fed back in to the

input of this XOR, and some other output like here D1 is also fed as the input of XOR.

So, here I have a choice I can use this I can take from D2, D2 D3 are all of them together

and output of the shift register is fed as the input to the first flip flop.

So, you see this LFSR does not have an external input. So, once you low D2 the initial

value and apply the clock, it will go and running in an autonomous fashion it will be

generating some patterns continuously. So, there is an alternate structure of LFSR which

is used more commonly for data compaction, where instead of using XOR in the

feedback circuit, we do like this we use the feedback directly, but we can use this XOR

gates somewhere in between and whenever you use XOR gate you also take one of the

inputs from this line. So, there can be an XOR gate here, so, one input will come from

here, one input from here like this. So, this is called type-1 LFSR, type-2 LFSR.

(Refer Slide Time: 19:20)

So, let us take the example of a generating a pattern using an LFSR. So, let us take type 1

LFSR like this, where I have 4 flip flops 4 bit LFSR the feedback connection is like this

from D4 and from D1 the output of the XOR is fed to D 1. Now the behavior of an LFSR

will depend quite a lot on the points from where you are taking the feedback connection.

Now this feedback connection are the structure of this LFSR can be defined by

something called the characteristic polynomial, like this particular for LFSR is

represented or characterized by this polynomial, where does this mean? You see x to the

power 4 x is a parameter, x to the power 4 represents this, x to the power 4 x to the

power 3, x to the power 2 x to the power 1 and x to the power 0.

So, here we have a connection from x to the power 4 and x to the power 1 that is why

these 2 terms are there, and 1 will also be there because you are connecting to x to the

power 0. So, if instead of this there is a connection from here, then instead of x 2 a 1 it

should be x to the power 2, x square if there is a connection form here it will have been x

cube. So, depending on your typing points from where your connecting to the input of

the exclusive or your characteristic polynomial will vary this is called characteristic

polynomial.

Now, let us see the patterns which are generated this D1 should be here; D4, D3, D2, D

1. Suppose we are initializing the LFSR with 1 0 0 0, 1 0 0 0. So, as we apply clock there

will be a shifting and a new bit will be getting in which will be the XOR of D4 and D 1.

So, this is D1 and this D4 right. So, you go and shifting like this D4 and D 1, 0 and only

1. So, next time we shift it this 1 will get shifted in D 1, next 1 and 0 you shift again 1

will be shifted. So, 1 1 1 and 0 again 1, 1 will be shifted 1 1 1 again 1 0, again 1 will be

shifted, but now 1 and 1 0 XOR is 0. So, now, 0 will be shifted 1 and 0 again 1 will be

shifted like this.

You see as you go and applying clocks, you will see some patterns have been generated

and after certain number this 1 0 0 0 is repeating. So, again after 1 0 0 this same pattern

will come again. So, let us count the pattern 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 patterns

have been generated. 15 patterns is generated before repeating. So, can you guess which

pattern is missing here? The all 0 pattern is missing, you see for LFSR the all 0 pattern

has very you can say dangerous implication, like once you load this LFSR with all 0

pattern it will remain in the all 0 state, because XOR of 0 and 0 will be 0, 0 will be

shifted. So, right shift and 0 comes in. So, it will remain or 0.

So, whenever we are one thing to LFSR for a data generation application, we should

never load it with all 0 and this is very good kind of LFSR we have chosen because we

are able to generate all the other 15 patterns accepting 0. And if you look at the decibel

equivalent of this numbers 8 1 0 0 0 is 8, 1, 3, 7, 15, 14, 12, 10, 5 then 11, 6 or so on

these numbers look random. Now there are some standard tests for randomness. So,

develop evaluated the patterns which I generated by LFSR with respect to randomness,

and it is in found that the randomness quality is pretty good other than one test which

fails, the other tests pass quite satisfactorily.

So, even if you want serial bit pattern you take the output of any of the flip flop, this is

also random 0 1 1 1, and 0 1, 0 1 1, and 0 0 1, 1 0 1 this is also random pattern you can

either take a parallel pattern as random or serially you can take one the output of any one

of the flip flop right, but only one test as I said which is not satisfied with respect to

random this is that, because the basic structure is a shift register you will see there is a

pattern diagonally 0 0 0 0 these are getting shifted 1 1 1 1. So, these are getting shifted

right. So, this is called cross correlation among the different bits, this is one property

where it fails.

(Refer Slide Time: 25:08)

Now, some definitions of LFSR; now we have taken in this example 4 bit LFSR and we

had seen that we has generated 15 patterns. So, in general for an n bit or n-stage LFSR,

so we can have at most 2 to the power n minus 1 pattern generated. Such a sequence

generated by an LFSR, where all the patterns other than the all 0 pattern are getting

generated that is called maximum-length sequence or m-sequence. Now the

characteristic polynomial you like in this LFSR the tapping points they define the

characteristic polynomial. So, the characteristic polynomial which generates and m

sequence is called a primitive polynomial.

Now, for this example this was primitive polynomial that is why 15 patterns were

generated. So, this, another definition that means, irreducible polynomial is a polynomial

which cannot be factored, now primitive polynomial is a type of irreducible polynomial.

So, there are ways to identify this kind of primitive polynomials.

(Refer Slide Time: 26:33)

There are comprehensive lists of these primitive polynomials available in various places.

so I am showing you a few. These number indicates the number of flip flops; that means,

number of stages in the LFSR, and these is kind of a coding from where you are taking

the tap, 3 1 0 means you are taking the tap of course, from the last stage 3 will be there

and from 1 and 0. So, the polynomial will be x cube plus x plus 1, for 4; x 4, x plus 1

similarly for 16 this 32 this 64. So, you see. So, if you take 32 bit LFSR with a primitive

polynomial like this; that means, there will be these many tapping points, then you can

have a circuit which can generate 2 to the power 32 minus 1 pattern; that means, 4 billion

patterns. We have a very convenient circuit which can generate 4 billion random patterns

ok so it is a big advantage.

(Refer Slide Time: 27:41)

So, this m sequences also have some interesting properties like as I said firstly, the

period before it repeats is 2 to the power n minus 1; that means, the bit a p plus i will be

equal to a i for p equal to n minus 1, it repeats after p. Starting from any non 0 state, the

LFSR will go through all the other 2 to the power n minus 1 states before repeating this

we have already seen. Number of once differ from number of zeros by 1. So, be if you

look at the output column for any of the bits, see for a normal truth table where you have

all 2 to the power n, number of zeros are once are equal. Now here we do not have the all

0 pattern, so now, zeros will be 1 less right? So, number of once will exceed number of

zeros by 1, and here there is some other properties also which are not very important in

the present the context.

Like if you slide a window of slide of with n across sequence of bits generated, then each

of the pat binary patterns will be seen exactly once in a period, like what I mean is that

like you look at this if you slide window of with 4 like a 0 1 1 1, then 1 1 1 1, then 1 1 1

0, 1 1 0 1, 1 0 1 0. So, these will be appearing exactly once and uniquely.

(Refer Slide Time: 29:28)

Now, of course, there is some other property where it runs, so here we are not wanting it.

Now randomness properties of m-sequence is something which you are interested about

here, because m sequences have very good pseudo - randomness properties; the auto

correlation cross co relation is 0, but cross co relation between 2 output bits 2

consecutive output bits is poor as you have said because of the shift register connection.

So, in a typical test environment like BIST, we can generate as many patterns we

required. If I say that I need 1 billion patterns fine I can do that. So, I means with a 1

gigahertz clock I need only 1 7 to apply the test, and the good thing is that we are able to

test that the maximum clock speed this is called at speed testing. Where some faults

which also arise because of delays in the circuit the critical timings they will also get

detected. In scan designs we often we are not detecting such kind of falls.

So, with this we come to the end of this lecture in our next lecture, we shall be looking at

the other part of BIST. So, we have seen the test generation part, but now after we have

obtain the responses how do I compact and compare that part will be seeing in the next

lecture.

Thank you.

