
VLSI Physical Design 

Prof. Indranil Sengupta 

Department of Computer Science and Engineering 

Indian Institute of Technology, Kharagpur 

 

Lecture – 51 

Fault Simulation (Part 1) 

 

So, we know start with the discussion on Fault Simulation. Fault Simulation is an very 

important tool which is used in various stages during the you can say test flow. It is used 

in conjunction with text generation; it can be used much later during the test flow cycle 

and so on. So, this is more like a tool which is used to get or analyze the quality of the 

test vectors and depending on the result of the analysis you can take some remedial 

actions. So, let us see what fault simulation is. 

(Refer Slide Time: 01:01) 

 

So, the input to a fault simulator are of course, the given circuit in the form of a netlist 

set of test vectors, and a set of faults, this is called the fault list. So, what the fault 

simulator computes, it tries to find out what are the faults that are getting detected out of 

this fault list by this test vectors; so, percentage of the faults in F that can be detected by 

T. So, addition it can also gives us some valuable information as to what are the yet 

undetected faults, the faults which are still not detected. 



(Refer Slide Time: 01:46) 

 

Diagrammatically so we just show it like this; we have a fault simulator, so as 1 of the 

inputs we give the circuit netlist. As the second input we give the set of all faults well, 

this can be the original set of faults after fault collapsing whatever, and thirdly we have a 

set of test vectors. So, what you get at the output is some kind of statistics with respect to 

fault coverage; which are the faults that are detected, which are the faults which are not 

getting detected and so on. 

(Refer Slide Time: 02:26) 

 



So, as I said we can use the fault simulation tool for various purposes. So, here I shown a 

few test grading concerns the determination of the quality of a given set of test vectors. 

Like suppose there are alternate ways of generating some test vectors, I use 2 alternate 

methods to generate the test vectors for the same circuit; let us say T 1 and T 2. Now I 

want to compare an access which 1 is better or not, typically I use a fault simulator for 

these purposes. I run my circuit and the list of faults with this set T 1, I again run with T 

2 and I compare the fault coverage I see which 1 is better right. 

Second use is in the test generation process; here we generate a test vector T i to detect a 

fault F i. Now here where fault simulation is used is. So, as we are generating a new test 

vector T i, we immediately carry out fault simulation to find out what all other faults are 

also getting detected by this same test vector. Now see here you may be little (Refer 

Time: 03:53) that why you are using fault simulation along with test generation, I could 

have this test generation again. Now the thing is that the complexity of fault simulation is 

much less as compared to test generation. 

Test generation takes much longer time as compared to fault simulation. So, we want to 

reduce how many times we need to run the test generation algorithm or the tool. Suppose 

I have 100 faults, should I run the test generation tool 100 times for generating test for 

these faults, or I generated test for the first fault, I immediately run fault simulation 

which I know is much faster and fault simulator tells me that this test vector also detects 

5 other faults. So, I remove those 5 faults from the fault list. 

So, my initial list of 100 faults, quickly gets reduced during the process and my overall 

time becomes much less. Fault diagnosis sometimes we try to identify the location of the 

fault through simulation by simulating faults, and of course in design for testability 

means approaches, where we can identify some points where some additional 

controllability and observability mechanism can be provided to improve testability, this 

can be done through simulation again. 



(Refer Slide Time: 05:29) 

 

Now, let us see how to simulate faults? We start with the naive approach; here we are 

saying that we shall be repeatedly using a simple logic simulation tool, what is a logic 

simulation tool? Logic simulation tool is software, that takes a circuit netlist as input and 

our test vector as a output, it will compute the logic values at the lines. So, it does not 

concern with faults, just the logic values that is why this is called logic simulation. 

So, here suppose I have a fault list consisting of M number of faults F 1 F 2 to F m, what 

we do? We simulate the fault free version of the circuit let us call it capital N, and the 

faulty versions in presence of this faults let us call them N 1, N 2 to N m with respect to 

a given set of test vector let us say there are n test vectors. So, for any test vector with 

any fault if there is a mismatch in the output, it will indicate that fault is detected. 

So, yet we since here what you are doing here we at a time we are inserting a fault in the 

circuit, then we were doing true value logic simulation. So, what I mean is something 

like this. 



(Refer Slide Time: 06:59) 

 

Suppose I have a simple circuit like this, now I want to introduce a stuck at 0 fault on the 

line, what I do? I make a small circuit modification, I apply a constant logic value here 

and then I simulate this is my circuit modification. So, this line is going no way and here 

I am applying a constant 0 to simulate the effect of stuck at 0. 

So, after doing this I can use a normal true value simulation, I apply a logic value and see 

what my outputs values are right. So, for every test vector I have 2 simulate for the m 

faults and 1 time for the fault free version, and there are n test vector. So, n multiplied by 

m plus 1, so many runs of the logic simulation algorithm. So, it is of the order of n 

multiplied by m; number of test vectors multiplied by number of faults which is pretty 

large. 



(Refer Slide Time: 08:12) 

 

Now, the various fault simulations algorithms can be classified as follow, let the first 1 is 

the 1 that the naive approach we just now saw, the rest 1 are some kind of faster 

versions. So, we shall see how they work. 

(Refer Slide Time: 08:34) 

 

So, serial fault simulation we have already seen this is the naive approach. So, we have 

seen that it requires so many runs of the logic simulation algorithm, where n is the 

number of test vectors, and m is the number of faults. So, they will be m number of 



faulty circuits and 1 faulty and 1 fault free circuit, so many simulations we have to carry 

out for every test vector.  

So, the basic steps can be summarized like this we first simulate fault free circuit for all 

the test vectors, and save the responses in a file; then at a time we inject 1 fault, we 

modify the circuit netlist just in the way I should I shown you just we can make some 

changes in your circuit netlist, so as to incorporate the effect of the fault, then you 

simulate this modified netlist for every vector and you compare responses with the 1 

which you have saved, to check whether the fault is getting detected or not. So, if you 

see that the fault is getting detected, then you can report that the fault is detected and you 

can suspend simulation of the remaining vectors because you know that it is already 

detected, you need not simulate with the remaining vectors. 

So, actually the total time will less than n into m plus 1 this is the maximum. So, as soon 

as you find that a fault is getting detected, you need not simulate to the remaining vectors 

we move on to the next fault. 

(Refer Slide Time: 10:09) 

 

So, advantage as this is very simple. Second you do not need as special software for this 

just a logic simulation tool is enough, drawback is that the time complexity is of the 

order of m into n which is pretty high, and also you cannot use it in the event driven 

mode. 



We event driven mode you recall is a method of simulation, where I do not simulate the 

whole of the circuits, I simulate only that part of the circuits where some changes are 

taking place. So, unnecessary I will not simulate the whole thing, but this method of 

serial method unfortunately cannot be used in the event driven mode so let us now come 

with the improvements. 

(Refer Slide Time: 10:56) 

 

The first method is called parallel fault simulation. So, here the main motivation is that 

compute a words are a contained multiple bits, typically 32 or 64 also in some modern 

machines. 

So, here we take advantage of multi bit representation of data, and also we know that we 

have and, or this kind of logical operation which are available in the instruction set while 

even in the even in the language like c, we have the logical and ampersand logical or the 

bar or not this kind of operations which you can carry out on an entire word; like say in c 

if I write a equal to b and c let us say, so b will be let us say a 32 bit word, c is a 30 bit 

word so what is carried out is bit by bit ending and you get the result A, this is A. 

 (Refer Slide Time: 11:51) 



 

Now the thing is that in the single instruction you are actually carrying out 32 and 

operations. There are 32 bits, this and is carried out bit wise for each of the 32 bits. So, 

there is a parallelism involved here, this is exploited in this method. So, what we do? 

Here in every pass of the simulation we simulate the fault free circuits as well as W 

minus 1 of the faulty version. I shall we illustrating with an example what I am saying is 

that in my computer word I have W bits, I reserved 1 of the bit let us say the first bit for 

the fault free circuit, and remaining W minus 1 bit I reserve for representing the faulty 

behavior in presence of 1 of the faults. 

So, at a time I can represent the behavior for W minus 1 faults. So, if there are more 

number of faults, I have to repeat this multiple times. So, this what we do in 1 pass, if 

there are total of q faults, so at any single pass I can simulate with W minus 1 faults, so I 

need q divide by W minus 1 ceiling of that so many passes. And here as I said in this W 

minus 1 bits where hard coding the faults into the bits, that is why we cannot use fault 

dropping we cannot remove a fault just like that. So, here also we have to simulate with 

all the faults. 



(Refer Slide Time: 14:02) 

 

Let us see with the help of an example, but let us see how we insert faults. There are 

many methods which have been proposed, so here we are explaining 1 of the methods. 

So, we illustrate with a particular gate; let us say I have a gate in my circuits, whose 

output line I call it a C l, here what you saying is that with every line we associate 2 

vectors M z and M o, these are used to insert the effect of faults and just one thing you 

remember, so whenever we talk about the vectors, let us say I have a vector like this. So, 

any particular bit of this vector will indicate the effect of fault f i. 

(Refer Slide Time: 14:41) 

 



So, fault f i occurs what will be the value logic value on that line? Similarly the others 

bits will indicate effect of some other faults just remember this. So, here we are saying 

how these bits are assigned. So, what we are saying is that the rule is something like this, 

suppose this is an AND gate, so I have the vectors corresponding to my 2 input lines, I 

first compute and of those 2 vectors let us call it Z, Z denote the logic value computed at 

C l. 

Now, after I compute Z, I make corrections or modifications to the bits to incorporate the 

effect of the faults here. What I do? I and Z with M Z, then or with M o and this is my 

modified logic expression or the word at the output l. Let us see how this M Z and M o 

bits are assigned this is explained here. So, we are talking of the ith bit. So, ith bit 

indicates the simulated value corresponding to fault f i. So, if it is fault free version; that 

means, I am talking about the first bit, then I said the bit in M Z to 1, M o to 0. Let us see 

what happens. So, if I and something with 1, it remains the same thing if I or with 0 it 

remains the same. So, I do not make any changes Z remains Z, this is for the fault free 

version. Similarly if the fault occurs somewhere else not in this gate, with fault not 

located at C l, then also I do not make any change M Z is 1 M o is 0. 

So, here we make changes only when there is either a stuck at 0 or stuck at 1 fault on C l. 

So, if there is a stuck at 0 fault on C l, we make the corresponding bits M Z, M o both 0 0 

why? If I do this Z ampersand 0, it become 0 or 0, it becomes 0. So, forcibly I am 

making that bit 0 right, to simulate stuck at 0. Similarly to simulate stuck at 1 I make 

both 1 1. C l is the, that is M Z, 1 1 means here this M Z can be 0 also does not matter 0 

or 1 1. 

So, here suppose it is 1 1. So, I and Z with 1 it becomes Z, I or with 1 so it is forcibly 

becoming 1. Another or with 1 is 1, so I am simulating a stuck at 1. So, if there is this ith 

bit corresponds to a stuck at 0 or 1 fault on this particular line, then only we change the 

corresponding bits like this otherwise we said the bits as 1 0 and 1 0 right. Let us take an 

example; suppose we have a simple example consisting of 3 gates - AND gate, NOR 

gate and an OR gate. 



(Refer Slide Time: 18:11) 

 

Just for the sake of example if suppose my work size is 5, first bit indicates fault free, 

next 4 bit indicate these faults. Suppose we want to simulated these 4 faults c stuck at 0, f 

stuck at 0, e stuck at 0, e stuck at 1. So, there are so many lines in the circuit a b c d e f 

and g; in this table we are showing the corresponding M Z and M o values, which we fix 

up at the beginning of the simulation. Let us see for a there is no fault on line a; so for a 

you see for all the bits it is 1 0, 1 0, 1 0 or 1 0, 1 0, 1 0. So, M Z is all 1, M o is all 0. 

Similarly b, there is no fault in this list; so b is also like that 1 0 1 0 all 1 all 0. But when 

you come to c you see that the second bit simulates the fault c stuck at 0. So, you see for 

the second bit we have made it 0 and 0, but the rest are 1 0 1 0 1 0 1 0 d again there is no 

fault, so d is all 1 0; e in e both faults are there the last 2 bits this is e stuck at 0 this is e 

stuck at 1. So, you see for e this last but 1 bit we put 0 and 0 to simulate stuck at 0, and 

last bit 1 and 1 to simulate stuck at 1, let us start 1 0 1 0 1 0. 

In f the middle bit is stuck at 1, so you see middle bit is 1 and 1; g no fault all 1 0 right. 

So, we fix these vectors a priori, then suppose we want to simulate with a 1 b 1. So, we 

start with a vector where a is 1 for all the cases, b is also 1 for all the cases. So, it is 1 for 

the fault free circuit, also for the faulty circuits we are applying the same inputs, a is 1 all 

1, b is all 1. Now you progressively carry out simulation for the c; this is a fanout 

connections, for d this will be start here and here in d what you do? You just recall the 



equation and M Z or M o right. So, this 1 1 which is coming, and M Z all 1 same or M o 

all 0 same, so it does not change it remains all ones. 

Let us come to c, this is also fanout branch that the same 1 1 1 1 1 will be Z here, Z and 

this. So, this bit becomes 0 or this so this second bit becomes 0. Now when you take and 

you do a bit by bit end of this 2 vectors 1 1 1 1 1 and 1 0 1 11. So, it becomes 1 0 1 1 1 

that is Z, then you make correction with e and with this, this bit also become 0 or with 

that that bit becomes 1 is already 1. So, now, e becomes 1 0 1 0 1 0 1. 

Similarly, there is a not gate 1 1 1 1 1 becomes 0 0 0 0 0; then inject the effect of fault 

and with this and or with this, this middle bit becomes 1, middle bit becomes 1 in finally, 

or this and this or no fault in g it becomes this. So, in the process when you finally, get 

the word at the output you see that your fault free output is 1, you check where are the 0 

bits you see there are 2 zeros, which means this 0 corresponds to c stuck at 0, this 0 

corresponds to e stuck at 0, which means both c stuck at 0 and e stuck at 0 are getting 

detected by this vector, and all this 4 faults we have simulated together in parallel in this 

1 pass. 

So, you see if it is a 32 bit word, you can simulate 31 faults together right, this is an 

advantage. But the over rate is that you have to use this M Z and M o and for evaluating 

each gate normally you would be requiring only and for an AND gate, but here even 

after evaluation you need an additional AND, and an additional or operation for this 

correction this is the over head; so 2 additional operations on every line using M Z and 

M o.  



(Refer Slide Time: 23:16) 

 

So, this method is clearly faster than serial for simulation, but the disadvantage is that it 

is applicable to combination circuits only; and it cannot be used event driven mode, 

because you are injecting different faults in different bits you cannot identify the events 

like that that I have to simulate this part not that part, but to simulate for all the faults. 

(Refer Slide Time: 23:44) 

 

Now, these same methods will if you can modify a little bit you get a third approach, let 

us try to see. In the parallel faults simulation what we were doing? We were simulating 

many faults together with one test vector at a time. So, how were simulating many faults 



together by having M Z, M o in all the lines. So, what was the difficulty or the 

drawback? And every line computation we needed one additional and one additional or 

operation during the simulation processing. But suppose we do it the other way round, 

what is other way round? We inject one fault at a time, one fault at a time means we can 

modify the netlist just like we mentioned earlier; and we do parallel simulation, but now 

the different bits will indicate the different test vectors not the different faults. 

So, we are simulating with different test vectors together. So, what is the advantage? 

Now we are doing away with those M Z and M o, we have no M Z M o. Where injecting 

1 fault at a time means we are actually modifying the circuits netlist, we are packing the 

bits with the different vectors and you are simulating them together; result is that this 

will run faster as compared to the earlier method parallel fault simulation, because we are 

not requiring to store and process the M Z and M o vectors, right. 

So, here as I said instead of simulating a faulty set of faulty circuits in parallel, we 

simulate a set of test vectors in parallel. So, if we are fault list consist of q faults, so at a 

time you are simulating 1 fault; so totally you need q plus 1 1 for the fault free 

simulation, and q for this q faults and in each of the passes you are simulating with all 

the test vectors. Like how you are simulating with test vectors I am giving you a small 

example, suppose I have a 4 bit circuits, for input circuits let us say T 1, T 2, T 3, T 4. 

(Refer Slide Time: 26:10) 

 



Let us say the inputs are A B C D, the circuits inputs are A B C D. Suppose the test 

vectors are as follows T 1 is 0 1 0 1; T 2 is 1 1 0 0 1 0 0 1 0 0 1 1 let us say. So, now, the 

when we pack out word let us say we have a 4 bit word in this case, the first bit will 

indicate T 1, second bit will indicate T 2, third bit will indicate T 3, 4 bit will indicate T 

4. So, there will be 1 word for lying A, 1 word for lying B and so on. So, for lying A the 

word will be 0 1 1 0; similarly for line B the word will be 1 1 0 0. 

So, in my circuits if I have a scenario where there is a let us say and gate which is driving 

A and B I can directly take the AND of these 2 without any corrective steps; simply bit 

by bit and it becomes 0 1 0 0, so the output vector will be 0 1 0 and 0. This will much 

faster as you can see. So, this is clearly faster than parallel logic simulation, because 

except the faults sides other parts we have not making any changes, in this way you 

comes to the end of this particular lecture. 

In the next lecture we shall be looking at a couple of you can very interesting and you 

can say more powerful techniques for fault simulation, where all the faults are simulated 

together. There is a very well defined technique that we shall be presenting there, where 

the faults are all handled together and another thing also ensured the process will be 

event driven, we will not process the parts of the circuits where there are no changes that 

will make the process even faster. So, this we shall be discussing in our next lecture. 

Thank you. 


