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Lecture - 49 

Fault Modelling (Part 1) 

 

So, in this lecture we start with a discussion on fault modelling as I said. So, fault 

modelling as I said this is the first step and a very important step in the total testing 

process. 
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So, let us first try to see once more that why we need a fault model. So, you know last 

lecture we mentioned this briefly, see we mentioned that the number of physical defects 

in a chip can be too many. In fact, it can be infinitely large. So, it is difficult; difficult is a 

very you can say loose term, you should say it is impossible; it is impossible to count and 

analyse all possible faults, because the number of possible defects can be infinite.  

So, what we do we abstract this physical defects and we define some fault models which 

are sometimes called logical fault models, because these are not faults which are not 

actually happening in the chip, we are logically assuming or thinking that the chip is 

behaving as if this kind of fault has occurred in presence of that defect or error right. So, 

by doing this what are the advantages we gain? Number of fault to be considered can be 

reduced drastically, by doing that the processes of test generation and fault simulation 



can be simplified and it can be made possible, because if we do not provide with a list of 

faults, what will the test generator do? Test generator does not know that which faults 

you are trying to detect, right number of faults can be too many. 

So, and also you can evaluate fault coverage and you can compare alternate sets of test 

vectors like you have say 2 test cells t 1 and t 2, you want to find out which one of them 

is better. You can do some experiment and see that t 1 can detect let say 85 percent of the 

faults, and t 2 can detect 90 percent of the faults; so t 2 will be better. So, unless you 

have a fault model you cannot do this kind of quantitative analysis right. 
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Now, this fault models can be defined at several levels of abstraction; just like a circuit 

can be described at several levels of abstraction. So, at every such levels you can define a 

set of faults and do some abstraction. 

Now, clearly so as you go towards the lower levels more detail description, your model 

will become more accurate, but the number of faults can also go on increasing. The 

typical description levels are as follows. So, the higest level you can think of the 

behaviour specification, where a circuit is described in terms of its behaviour in a high 

level language like VHDL verilog, or other languages are there also. So, you can think 

what kind of faults can take place at that level of discription, then your functional level 

where you are looking a the functional blocks some of the funtional blocks at the rtl level 

typically, then structural level typically this works at the gate level.  



So, at the level of gate level netlist, what kind of faults can be there. Switch level means 

transitor level, and geometric level means at the level of the layouts. So, as move down 

your fault models will become more and more realistic, but the trouble is that the number 

of circuit components is also going up very rapidly. Number of functional blocks and 

number of transitors, so you cannot really compare them, number of transistors will be 

much much higher. So, number of possible faults will also be much higher, but of course, 

they will be more accurate if you can model the faults at that level. 
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So, let us quickly look at the various fault models at this levels. So, the highest level 

behaviour level fault model; here as I had said the circuit specification is specified in 

some high level design discription language like verilog ar VHDL, and we define some 

faults which are with respect to the constructs of this language like I am explaining a few 

of them, like you say some variable is permanently in the low or high level states like let 

us try to just explain it. 
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In verilog you can define a variable right. So, you can define the integer, you can define 

it as a bit. Let say whenever you define as a let say I define an integer X let say, but in 

terms of the hardware if I look this X will be mapped into a register, let us say its a 32 

width, X will be mapped here. Now in every register in terms of the circuit connections 

there will be a connection to power supply, there will be another connection to ground; 

lets say the outputs are coming here. Now lets think of some faults at this level, if V DD 

is disconnected due to some reason. So, V DD is disconnected. So, if V DD is 

disconnected if you read out the contents of the flip flops, all of the bits will be looking 

at 0. 

So, you will get all 0’s. Similarly if ground is disconnected, and you try to read out the 

outputs you will see that all the outputs are having V DD that mean all 1’s. So, whatever 

fault model you are assuming there is a correspondence from the correspond means low 

level hardware realization of that right, then the second such fault which is mentioned 

here it says that an assignment statement X equal to Y does not work; which means you 

are giving this assignments, but the value of the expression Y is not getting assigned to 

X, X remains at it own value. Well again in terms of the hardware what can be the reason 

let say. 

Here I have a register which is suppose to hold the value of let say X. So, I have a 

statement X equal to Y. So, there is a circuit which is calculating the value of Y and it is 



feeding here, and naturally with each register there has to be a some kind of a load 

control input. Now you think of a fault where this load is disconnected; somehow this 

load connection is not getting connected. So, what will happen? This Y will never get 

loaded. So, in terms of the assignment this assignment will never occur right? Then let us 

come to the next one, lets say for an if then else kind of a construct, this says that either 

the then or the else path is never taken.  

Similar is a case of a multi Y if then else like a switch construct, some branch is never 

taken. So, you see here also the problem is some what similar; like when we have a multi 

way branch. So, your are going either here or there or there, there can be some kind of a 

demultiplexer, which will be selecting which path to follow. Now because of some fault 

in the demultiplexer, some of the lines may be always getting selected or some the lines 

are getting never selected right? Due to some problems in the control circuit, this kind of 

things may happen. 

So, here we are abstracting these faults as a fault in the if then eslse construct or as a 

switch construct. Similarly for a control loop like a let say a loop which is suppose to 

execute certain numbers of times like a fall loop. So, loop is either always executed or 

never executed. So, again due to some error in the control circuit which controls the loop 

right? Normally the loop counter will be decremented and there will a checking for 0, 

may be the checking for 0 circuit is not working. So, it is always saying that it is not 0. 

So, the loop will go on and on and on; and if due to a fault if it says that that it is always 

equal to 0 then the loop will never go it will just immediately come out right.  

So, such things are modelled in a behavioral level fault model at a high level, clearly 

these are not very accurate in terms of the final circuit realization, but some industry use 

these methods because they have much lower complexity of course, in congestion with 

the other fault models also fine. Next let us come to functional fault model where you 

assume that our circuit is specified at the register transfer level, where we have 

functional blocks like registers, adder, multipliers, multiplexers, bus and so on. 
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Now, one problem with the functional level fault model is that, it is not general means 

some fault model that can be applied to a multipexer; you cannot apply to a decoder, you 

cannot apply to a memory. So, there will be some fault model that is specific to a 

multiplexer, there is a fault model that is specific to a memory and so on.  

But once you can define these fault models they can be very efficient, and the test set can 

be generated absolutely directly. I will give an example for a multiplexer that how it 

works. So, we take an example of a 4-to-1 multiplexer. So, for a 4-to-1 multiplexer let 

say that the 4 data inputs are A 0, A 1, A 2 and A 3 there are getting selected using the 

select input values S 0 and S 1 and there is an output F. So, we shall show now that how 

you can generate the test vectors directly, by looking at the functional behaviour of a 

multipexer. 
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So, it is shown in this slide; see here we see our multiplexer these are the 4 inputs the 

select lines and the output. Now here I am directly writing down the test vectors that I 

require. So, lets try to understand.so how you are doing it. First thing is that we are using 

different values of S 0, S 1 combinations. So, first 2 rows have select line 0 0, second 2 

row are 0 1, next 2 rows are 1 0 and last rows are 1 1. So, the first 2 rows are suppose to 

select A 0, next 2 rows are suppose to select A 1, next 2 supose to select A 2, and the last 

2 suppose to select A 3 now let us see. So, I apply 0 0 to S 0 and S 1. 

So, now A 0 is selected. So, what I can say that I apply A 0 equal to 0 and check whether 

the output is 0 or not. I apply A 0 equal to 1 and check whether the output is 1 or not 

right, but why I am applying the reverse logic value to the other 3 inputs? Because you 

can argue that when I am selecting A 0, this A 1, A 2, A 3 should be known to us right, 

but I am applying reverse value because if there is a fault like this, that I am trying to 

select line A 0, but due to the fault either A 1 or A 2 or A 3 is getting selected. So, there 

there will be a miss match in the output. So, normally A 0 is suppose to be selected I am 

getting 0, but if by mistake A 1, A 2, A 3 is getting selected I will get 1 so I can detect 

the fault.  

Similarly for this case normally it is 1 and if some other inputs are getting selected, I will 

get a 0. So, always I means we detect a fault if we can detect a miss match in the output. 

So, same thing is happening with the other pairs of rows, in the next pair we are selecting 



A 1 by appling S 1 0 S and S 0 1. So, you see in one case I am appling A 0, A 1 equal to 

0 other case A 1 equal to 1, the others are reverse; 1 1 1 0 0 similarly here we select A 2, 

0 1 here we select A 3, 0 1. So, you see we can directly we have written down this 8 test 

vectors, that can detect these fuctional faults in the multiplexer. You see this is exactly 

what you want for a multipexer to work correctly you do not need any thing more than 

this, and another thing you see the original multiplexer had 6 inputs right, so 2 to the 

power 6 was 64.  

So, instead of 64 test patterns I did only 8 test patterns, this is one of the major objectives 

of having a test generation method, where the number of test to be applied can be 

drastically reduced. So, to generalise if we have a 2 to the power n to 1 multiplexer, we 

will need 2 to the power n plus 1 test patterns, and all functional faults as I had said can 

be detected like some input line is incorrectly selected, some lines are constantly fixed at 

0 or 1 all these faults can detected by this simple set of tests. But you can see this 

strategy you cannot extend for a decoder also any other functional block, for that you 

will again have to do some kind of similar functional behaviour analysis and you will 

have to find out the test vectors, but once you able to do it is very easy right. 
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Now, lets come to the structural level fault model, which is perhaps the most widely used 

and common. Here the circuit is specified as a netlist means an interconnection of some 

blocks, typically at the level of gates and flip flops. Because most of the structural fault 



models that have been proposed and discussed, they consider the circuit as a netlist of 

gates or for sequential circuits also filp flops right. Now here the interesting thing is that 

we assume that the functional blocks does not contain any faults, the gates are fault free, 

the interconnection between the blocks can be faulty. So, what we mean is this? 
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Let say we have a circuit, lets take a 3 gates circuits simple. So, according to this fault 

model we are saying that there can be no faults inside these gates, these gates are 

perfectly alright. Faults can only happen at the interconnections; some failure can happen 

in this interconnection or this interconnection or this interconnection. You see because of 

this thing what you can say is that may be for this gate let say if we look at this gate, we 

can say that one of the line of this gate is permanently stuck at 0 let say. Stuck at 0 means 

it is always at 0, this can be regarded as a fault due to this interconnection, the 

interconnection line accidentally there is a failure, there by this line is always at 0 or 

similarly here, but again you see I repeat these are all manifestation of physical faults, I 

am saying that there is a stuck at 0 fault here, but it does not mean that physically this 

wire is faulty; physically it might happen that that there is some fault inside this gate, but 

it is behaving as if this line is always at 0 fine. 

So, the assumptions are like this, the blocks are fault free and interconnections can be 

faulty. So, the basic idea is to ensure that there is no fault in the interconnections and 

they can be able to carry both logic 0 and logic 1 signals. There are 2 popular structural 



fault models which are used; the first one is a most popular, this is called stuck at fault 

model and the second one is called bridging fault model. 
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Let see stuck at fault model is conceptually very simple, it says that some of the circuits 

line are permanently fixed at logic 0 or logic 1 means we called them stuck at 0 or stuck 

at 1. This is a very popular fault model and it has been analysed and found that it can 

actually model many realistic physical failures and of course, this fault does not assume 

that whether you are using cMOS or t l or any other technology, this is technology 

independent and notationaly for a particular line lets say A faults are denoted as either 

like this A stuck at 0 or you simply write A slash 0 or A stuck at 1 or A slash 1. Now one 

point you note is that in this fault model the fanout stems and fanout branches are 

considered as separate lines, like in this diagrams F is a fanout stem, and F 1, F 2 are 

fanout branches, they are consider a separate lines let see why, lets try to explain. 
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So, we have this gate this output is F, and this output is going to 2 fanout branches F 1 

and F 2; and this fanout branches are possibly going to the input of some other gates 

right this is one gate, there another gate there. Now let see say mean electrically, 

electrically speaking F, F 1, F 2 are identical. 

So, whatever voltage should be there same voltage should come in F 1 and F 2. But you 

see there can be some faults which are here may be lets says there is a disconnection 

here, this wire which is suppose to be connected to the this inout of the this and gate 

there is a disconnection here, because of which this gate input is behaving as if it is at 0. 

So, I denote it as F 1 stuck at 0 fault, but clearly this fault will not affect F 2 or it will not 

effect F. This will only effect the input of this gate; that means, F 1 similarly there can be 

a fault at F 2 this will be independent of F 1 or F, but; however, if there is a fault at F, 

that fault will be going to both F 1 and F 2; because the direction of signal transmission 

is this alright. So, because of this the faults of the fanout stem and the branches they are 

considered as 3 different faults. So, let us come back. 
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Lets take an example; this is a nand realization of a 2 input xor function. So, there are 4 2 

input nand gates. So, as you can see there is a fanout connection from here, one from 

here and another from here. So, I have named the different lines accordingly this is A 

and the 2 fanout branches are called A 1, A 2. This is B, B 1 B 2 and this is C and this 

are C 1 C 2. So, if you count that how many lines are there in a circuit, you can see 1 2 3 

4 5 6 7 8 9 10 11 and 12. So, there are total 12 lines in the cicuit. So, now, if you want to 

count that how many stuck at faults are there total. So, each of the lines can be stuck at 0, 

or stuck at 1 like A can be 0 or 1, B can be 0 or 1, A 1 can be 0 or 1. So, I have made the 

fanout branches and stems separate A 2 can be 0 or 1. 
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So, in this way for the 12 lines, we can enumerate 24 possible stuck at faults right. So, 

for this circuit we can count and tell that there are 24 stuck at faults. Let us look at some 

specifics; there are 2 variations of stuck at fault model, one is called single stuck at fault 

which is the most popularly used; because of its simplicity. This fault model says that 

only one line of the circuit can be faulty at a given time. So, although there are 12 lines 

here, but at a time 1 line will be faulty; this fault model is most widely used in the 

industry, and you can clearly you can count that because each of the lines can have 2 

faults stuck at 0 or stuck at 1. So, how many single stuck at faults can be there? We have 

already counted earlier there can be a 24 such fauls so that will 24. So, it will 2 into k. 

So, if there are 12 lines, and if you assume that 1 fault is occuring at a time. So, there 

will be 2 k possible faults. So, in this case number of single stuck at faults will be 24. 
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Now, now if we remove the restriction of single fault occuring, we can have a any 

arbitrary number of faults happeing, this is called multiple stuck at fault model. This says 

that any number of circuits lines can have such stuck at faults at a time. 

So, here we have given expression if a circuit as k lines, total number of mulitiple stuck 

at faults will be 3 k minus 1; well how this number is coming? Let see we have a circuit 

there are k numbers of lines, look at each of the line one at a time, the first line can be in 

3 states meaning it can be either good, it can be stuck at 0, it can be stuck at 1. The 

second line can also be in 3 states good, stuck at 0, stuck at 1. Third line can also be in 3 

states good, stuck at 0, stuck at 1. So, there are k such lines. So, the total number of 

possiblities will be 3 into 3 into 3 k times, 3 to the power k. At out of this combinations 

one combination will denote all lines are fault free. So, thats why we substract one from 

that 3 to the power k minus 1. So, many faulty situations can be there right, 3 to the 

power k minus 1. 

So, you see that even for the small circuit. So, when you have k equal to 12, 3 to the 

power 12 minus 1 is becoming more than 5.3 lakhs. So, what will happen for the largest 

circuits, multiple stuck at faults will be virtual infinite right that is why people stick to a 

single stuck at fault and analyse them. 
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But there is an interesting result which can make us feel good. A test set that detects all 

single stuck at faults, will also detect a large percentage of multiple stuck at faults. It is at 

least greater than 95 percent this has been proved exponentially and also verified. And 

there are some results for some specific kinds of circuits like if a circuit does not have 

any fanout connections, this is called a tree like circuit with no exclusive or exclusive nor 

gate, and not and or nand nor gates. Then it it can be proved that any set of test vectors 

that detects all single stuck at faults, can also detect all multiple stuck at faults right. So, 

these results tell us that single stuck at fault is not that bad, if you can detect all single 

stuck at faults we can also detect a large percentage of multiple stuck at faults, in some 

cases all of them. 
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Let us look at some examples, here we have a simple 2 input and gate we stick to single 

stuck at faults now. 

So, I say that to test this and gate I need 3 test vectors 0 1, 1 0 and 1 1; why? If we just 

look at it 0 1 if I apply 0 1, the output will be 0. So, what are the faults it can detect? It 

can detect A stuck at 1, because normally the output was 0, but if A is also fixed at 1, 

both will be 1 1 the output will change. Similarly if the output line is stuck at 1 that also 

will make the output change, this 1 0 similarly will detect fault on B, it will detect if B is 

stuck at 1 then the out will change and also F 1. 

Well 0 0 test vector is useless for a and gate it will not detect any fault any single fault, 

because output is 0 in case of just only for F stuck at 1, but for faults in A there will be or 

B no change, but if I apply 1 1 then I can detect all these 3 faults because normally 

output will be 1 if any of these 3 fault are there output will become 0 right. 

Now, lets go to a 4 input and gate, you see for 4 input and gate we need 5 test vectors, 

not instead of 16, 2 to the power 4. Here we require 1 less you see 0 1 1 1, 0 1 1 1 this 

will detect fault A stuck at 0, this can easily check if A stuck at 0 is there the output will 

change and also F stuck at 1. 1 0 1 1 will detect stuck at 1 on line B, 1 1 0 1 will detect 

stuck at 1 on line C and 1 1 1 0 will detect stuck at 1 on D; and similarly 1 1 1 1 will 

detect stuct at 0 on all these lines. So, only 5 test vectors are required. So, in general for 



an n input and gate, you need n plus 1, so many test vectors and not 2 to the power n 

right. 

(Refer Slide Time: 29:19) 

 

Let us take some examples 3 input exclusive XOR. A 3 input exclusive xor will recall 

only 2 test vectors, 0 0 0 and 1 1 1. See you think what an exclusive xor gates, an 

exclusive xor gate will have the output 1, if odd number of inputs are at 1 and the output 

will be 0 if even numbers of inputs are 0 right. Now here the first test vector is having 

even number of inputs as 0 as 1 and here is having odd number of input.  

So, for first one out is 0, here output is 1. Now if any one of the input is having stuck at 1 

fault, so number of 1 will change from even to odd. So, 0 0 0 can detect all input stuck at 

1 faults and of course, also output stuck at 1 fault. Similarly 111 there is an odd number 

of 1, but if there is a stuck at 0 fault in any one of them, number of ones will become 

even, so output will become 0. So, 1 1 1 can detect all input stuck at 0 faults. Look at 

your 4 input xor gate well; unfortunately here you need 1 extra vector why? Because this 

all 0 and all 1 patterns both are having even number of ones.  

So, the output is 0 in the both the cases. So, how do I detect output stuck at 0 fault? For 

that I need 1 extra test vector with odd number of ones, the last vector detects output 

stuck at 0 fault, but the other 2 just as usual all input stuck at 1, stuck at 0 faults, and for 

both these cases output is 0 that is why I detect stuck at 1 faults. So, in general for m 

input xor gate, m can be 100 1000 whatever. So, if you able to build that gate, number of 



test vectors required will be only either 2 or 3; 2 if m is odd and 3 is m is even this is a 

very good feature of xor gates. 

(Refer Slide Time: 31:31) 

 

And lastly let us look at the bridging fault model, here we say that 2 or more lines are 

getting shorted together, this is quite possible because lines are running so closely 

together in the layout, and during fabrication there can be some imperfections. 

Because of this bridging something is happening we called it as a AND-bridging or a 

OR-bridging this and brigding says. 
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So, it happens like this, there are 2 lines and there is a short circuit here. Becausing of 

AND-brigding what we say is that we assume that as if there is an implied and gate, 

which has been inserted here, because of this connection and this output of this and gate 

is going to both places; which means if one of these inputs is 1, other input is 0; because 

of this and bridging there will be an and of 0 and 1, both of these lines will become 0 and 

0 right. 

Similarly, OR, so whether it is and or or it depends on which techonology you are using 

for cMOS it is I am bridging typically, and whether we are using positive or negative 

logic. Positive logic means high voltage is 1 low voltage is 0; negative logic means high 

voltage is 0 low voltage is 1. Now as the example I have shown to detect and bridging I 

have to put one of the lines involved in the bridging as 0, while the other lines as one 

because why? Because if there is no bridging here, the output will be coming at as 0 or 1, 

it was 0 or 1, but because of this fault, the output will be coming 0 and 0 there will be a 

change. So, I can detect it right. 
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So, this diagram shows that exactly what I told. In the first case as you can see these 

lines F and G the outputs of 2 gates are running parallel, they are getting shorted bridge. 

So, affectivly there is an and insert and operation inserted the output of which is going to 

F and G, and if it is or bridging there will a or operation right.  



So, with this we come to the end of this lecture, in the next lecture we shall be looking at 

some more fault models, and some other means operations that we typically carry out to 

reduce the number of faults. 

Thank you. 


