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Lecture – 46 

Layout Compaction (Part1) 

 

So, we start with this lecture on Layout Compaction. Now the basic idea behind layout 

compaction is this, you see we have seen the various steps of physical design starting 

with some kind of specification and netlist we go through partitioning placement, floor 

planning routing then detail physical design. Finally, we create a layout which is nothing 

other than as we have seen already some collection of rectangular shapes, this 

rectangular shape may indicate short segments of connections on diffusion polysilicon or 

the various metal wires, they may represent transistors which is an intersection of a 

diffusion and a polysilicon rectangle or there can be various contact connections. So, 

here we talked about layout compaction. 
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Now layout compactor what it does? It generates or it reduces the area of a layout at the 

mask level well. Compactor is general it can generate the layout from this stick diagram 

also like what I have said or given a layout it tries to reduce the area by bringing some 

rectangle closer to each other. See the idea is this you already have the design rules, 



design rule specify that your wires has to be of minimum this width, they have to be of 

minimum this much separation. 

Now, in a layout you may see, but well this separation between 2 features or 2 blocks or 

objects are greater than what the minimum design rule constraints specifies. So, you can 

possibly bring them to closer, basically this layout compaction means this you are try to 

bring things closer to each other without violating the rules or constraints such that you 

generate or you get a layout whose area is reduced as compared to what you had 

originally. So, compaction is a quite general tool. So, you can use it for a number of 

things of course, area minimization by removing redundant space what I was saying.  

Second thing you can also use it for layout compilation means starting from a symbolic 

layout or stick diagram layout, you can directly generate the mask level layout the 

rectangles following the design rules. Redesign means you can have as I said earlier 

during our discussion on design rule check. So, you can have a phase where you check 

for design rule violations in your layout. So, one some violation is detected, this layout 

compactor tool can rework on that part where design rule violations are taken place and 

can create a correct design which you do not have any violation; and of course rescaling, 

when we go from one fabrication technology to another, you can use this kind of 

compaction tool to convert the layout from one to the other fine. 
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So, when I talk about compaction there are a few things, space between the features, size 

of the features, and shape of the features. Normally shape of the feature is predefined in 

many cases, but in some cases there may be some constraint on the shape of the features 

as well. So, this can accepts some kind of a layout as input, and generates the final layout 

as output. So, let us try to see the problem formulation. 
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So, we are given a set of geometric features M 1, M 2 to M n. 
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So, the features when we talk about there can be any kind of features, I am just showing 

them as rectangular blocks without any colors, because I am not showing the layers in 

general. But what I am saying is that depending on the layers in which these blocks are, 

there can be several constraints like of course, design rule constraint says that you have 

to have some minimum width of this lines. So, we assume that those are satisfied you 

can also check it specifically, but what we are more interested is that, what are the 

separations between these 2 these blocks? 

Suppose you may find that for this one, the actual separation is 4 lambda, but our design 

rule says that it should be greater than equal to twice lambda. So, in that case we can 

possibly push this rectangle up like 2 lambda. Similarly let us say this is we say this is 3 

lambda, but again our design will say it has to be minimum 2 lambda. So, we can again 

push this to the left by 1 lambda. So, in this way we can create a layout which will be 

smaller in terms of the total area. So, there are 2 kinds of constraints which are specified 

one is the minimum features size. 

So, for the each of the geometric features this s Mi will indicate typically the minimum 

width, and in some cases also height and width, and the minimum separation between 

every pair of M i and M j, this is denoted as d M i M j. The objective will be given this 

layout we try to minimize the layout such that size of M i where size of M i is the size of 

this after compaction, and dist M i M j is the distance after compaction, they should be 

greater than equal to the minimum value that is specified for every pair of i and j this is; 

obviously, the problem formulation this is what you are trying to do. 
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Now, some of the designs style specific issues like when we talk about the full custom 

design style, it is here where compaction becomes very critical. Because the blocks can 

be located almost anywhere in the chip, so there is no regularity in the layout unlike the 

standard cell where you put everything on the cells, and they are already predesigned. 

You see for standard cells each of the cells are picked from a library, they are already 

predesigned and optimized there is no scope for any further compression or compaction. 

In the standard cell the only thing you can compact is rows may be the amount of space 

you had kept between the rows, you did not use that whole space for routing, you can 

move 1 row above a little bit. 

But for full custom it is very general, you can have the possibilities of compaction in 

almost all ways, typically after placement and routing lot of space are left vacant you 

have to compact them. So, for standard cell design style as I have said the heights of the 

cells are already fixed so we cannot do anything there. So, the height of the layout can be 

minimized only by minimizing the channel height. So, this is something called channel 

compaction. For gate arrays again because the locations of the gates are already there is 

no scope for compaction here. 
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So, when I say compaction, generally we do it for full custom design. So, broadly 

speaking compaction algorithms can be classified into 2 types first is graph theoretic 

approach which are based on minimum distance between features, there is something 

called constant graph which can be used or the concept of virtual grid. Second broad 

class is more direct, this along some directions 1 dimensional, 2 dimension or something 

in between it is called 1 and half dimension, you can move the features and try to carry 

out compaction. 

So, let us look into this one by one. So, the constraint graph based compaction it defines 

something called a constraint graph. 
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Now, in a constraint graph every vertex represents a rectangle or a component, and the 

edges they represent various kinds of constraints. The constraints types can be 2 types, 

one is they may say something related to connectivity with 2 wires must be connected to 

each other, or something related to separation. 
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Now, connectivity constraints like say here I am give an example, suppose there are 2 

features X and Y, and the feature the location is identified by the middle points say along 

X axis this is the middle of X, this is the middle of y. 



The connectivity constraint says that X and Y must be within distance S of each other, 

this S can be 0 also. So, if there has to if there is a direct connection this S can be 0 also. 

So, if there is a constraint like this, then in the graph we add a pair of edges one from X 

to Y, other from Y to X with negative weights. The weight of the edges will be minus of 

S, minus of S indicates that it is that this X and Y must be within this range and they 

cannot be moved away, because if you move it away the value of S will increase and the 

weight minus S says it will made the cost function words. 

So, the cost function is defined accordingly, when you make such moves. So, the other 

kind of constraint is separation constraint it says, that 2 blocks must be at least d distance 

away from each other. 
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So, here you add an edge with a positive weight d. So, in general they will be having a 

large graph with both positive and negative edges that will be your so called constraint 

graph. Now the question is how do we generate the constraint graph? 
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Constraint graph means given a number of blocks, blocks means rectangles I am talking 

about here in this context. So, what are the constraints separation their connectivity and 

so on. So, one of the very interesting methods of generating this kind of constraint graph 

is something called shadow propagation. Shadow propagation means the idea just 

follows suppose I have the layout with me. So, I am using an imaginary source of light.  
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So, I am illuminating my layout from one side, some of the blocks will be generating 

some shadows like what I mean is that something like this, like I have my layout here let 



us say there is a block, block A sitting here. So, I am using an imaginary source of light 

from this side. So, what will happen if the light falls as parallel rays on this edge, this 

block A which is opaque will be generating a shadow in this region; so there can be some 

blocks in this region also let say there was a block here. So, this shadow will totally 

cover this block such things can happen. 

But there is a, but if there is some block out here let us say a block B here, this B will 

also get the light fine. So, this shadow of the feature is propagated along the direction of 

compaction, here I am saying from left to right. The shadow which is generating is 

slowly propagated from left to right, and as I said this shadow is caused by shining an 

imaginary light from behind the feature and the consideration, and the shadow is 

extended to both sides of the feature usually not on the right like here what I am saying is 

that in general for a complete layout so I may consider a feature which is inside in the 

middle let us say A.  

So, for this sometimes I imagine my light to be here so that shadow will be propagated 

along this direction, but may be after that I will be imagining my light to be here so the 

shadow will be propagating in this direction. 
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So, the constraint on all the sides similarly up similarly down, they will be considered in 

all directions. So, whenever the feature is obstructed by another feature we add an edge 

this is the idea, and the obstructed part is removed. 
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This process is continued until all of the shadows has been obstructed and is repeated by 

every block or feature in the layout. So, I am illustrating with the small example let us 

take this. Suppose we are illuminating this light with respect to a block A. So, we are 

trying to look at the dependency of the block A. So, we are illuminating a light from this 

side, this light reaches A this light also reaches F, but you see because of the geometry it 

does not reach see for this there will be a shadow. So, I am extending this a little bit. So, 

this is the shadow I am showing, the shadow is being extended to B, but the shadow does 

not touch C because C is hidden by B right. 

Similarly, here the shadow reaches D it also reaches part of E. Shadow reaches G, but 

does not reach H, because H is hidden behind G, but light directly reaches F. So, with 

respect to the shadow see as shadow reaches where reaches B, reaches D, reaches G and 

reaches E. So, there will be one edge in the constraint graph corresponding to all these. 

So, and you when you add these edges depending on the design rule you can also add the 

weights. So, A and B minimum how much separation it should be? 

Suppose this is polysilicon this is also polysilicon this should be 2 lambda, similarly A 

and D how much minimum separation A and D, how much separation like this. So, this 

you repeat for all the blocks and we will getting all the edges in the graph right. So, this 

is the basic idea behind generating the constraint graph. 
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Then we come to something called virtual grid based compaction. So, here we are 

imagining a grid on the layout surface. So, where assuming that the components are all 

attached to a grid, it means it is something like this. 
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Let us say we imagine some grid lines, let us say in one direction only I am showing and 

the components on the rectangles they are all tagged with the grid, one is like this, one is 

tagged like this other is may be like this. 



Similarly, here there can be one object like this, one object like this. So, here what I am 

saying is that here we are allowed to move this grid lines to the left or to the right 

whatever is applicable, but when you move it here all the objects which are attached to 

the grid, they will all move simultaneously. This grid line if you move to the left all this 

three blocks will also move. So, you look at the separation minimum separation, you see 

that whether the separation is greater than the minimum permissible, if not you move it 

as long as there is no design rule violation. 

As soon as there is there is a violation you stop there. So, here each component is 

considered attached to a grid line, the compaction process compresses the grid along 

with all components placed on it. So, they all move together, keeping the grid lines 

straight like we do not make the grid line crooked we will see a version later, but you can 

do it. Grid line crooked means let us say for this grid. So, I do not move this, but I move 

this one a little left let say here. So, now, my grid line becomes like this, it becomes 

zigzag this is not allowed in this method. 

So, the minimum distance between 2 adjacent grids depends on the components on these 

grid lines. Component means let say this can be metal this can be diffusion, this can 

metal this can be polysilicon, this can be metal. So, depending on them the separation 

will be defined. So, you can do compaction along the X direction, you can also do a 

compaction along the Y direction. So, you can define the wires vertically which means 

you are doing X direction compaction or you can define this grid lines I mean you can 

define that horizontally, means you will be doing compaction in the vertical direction ok. 

So, you can do X compaction followed by Y compaction or vice versa both you can do 

ok. 
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So, the advantage is that it is fairly simple and easy to implement, you have to layout 

with you containing all the rectangles, you just assume the grids and you move the 

blocks around to align them with the grids, then let the grid lines move as much as 

possible you can compact. But the drawback is that it does not produce very compact 

layout as compared to constraint graph method for example, because you are constraint. 

So, when you are defining a grid you are saying that there are 10 blocks connected to the 

grid. So, either they all move together or none of them moves, but it may be possible that 

out of this 10, 4 of them you could have moved, but the other 6 you are not able to move, 

that you are not allowing here right. 
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So, a very simple example let us consider situation here where there a 9 such blocks are 

objects features. So, the separation between them are shown 3 2 6 4 4 3 and distance are 

separation between these 2 grid lines are 16, and 7 and third grid lines is 12. Now you 

may see it will this actually does not show, but these may be some features are set that 

you can bring them closer together. So, by doing that this example shows that you have 

been able to bring DF closer together so now distance becomes 14; similarly G H I also 

you move closer together this distance become 11 something like this. Similarly when 

you move in the Y direction you will be imagining grid like this, moving in the other 

direction right. 

So, this is exactly what we do here in case of this kind of virtual grid based compaction, 

where given a complete layout which I am repeating; given the complete layout you 

imagine grid lines, and as when I am required to align this small rectangles to the nearest 

grid, then let the grids move with all the attached blocks or objects with it. So, this is 

how you are doing the compaction. So, here the checking for the design rule is also 

simple and of course, this algorithm will be linear in the number of blocks, so the time 

complexity will not also be very high all right. So, this is the method. So, we shall later 

see means another variation where you do not restrict ourselves to a, you can say vertical 

grid. So, grid can be broken and made zigzag if required this can be one variation.  



With this we come to the end of this particular lecture, in the next lecture we shall be 

looking at some more methods of layout compaction, in particular the more direct 

methods those 1 D, 2 D and 1 and half D. 

Thank you. 


