
VSLI Physical Design 

Prof. Indranil Sengupta 

Department of Computer Science and Engineering 

Indian Institution of Technology, Kharagpur 

 

Lecture - 40 

Physical Synthesis (Part 2) 

 

So, we continue with our discussion on physical synthesis. In our last lecture if we recall 

we talked about 2 techniques; gate sizing and buffering introducing buffering 

interconnection lines. So, we continue with our discussion. 

(Refer Slide Time: 00:38) 

 

So, we look at the third broad approach in this lecture netlist restructuring. So, as the 

name implies we are trying to modify circuit netlist in some way, and there are many 

ways in which you can do that. Now as I said that we are modifying the netlist in some 

way our objective is to improve the timing, but quite naturally we do not want that by 

this modification, this circuit functionality should change that should not be modified. 

This circuit functionality should not be modified, but we can use some additional 

hardware like some additional gates may be required, some additional connections may 

need to be added. So, we shall see a number of various techniques here. This list is not 

exhaustive some of the very common netlist modification techniques as follows; cloning 

which as the name implies we do some kind of cloning or duplication here we duplicate 

gates, we can redesign fanin or fanout tree networks. We can swap commutative pins of 



some of the gates, we can decompose some gates using some simple Boolean algebra 

rules, and here again using Boolean algebra rules we can restructure some circuits. So, 

we can implement them in different way so that the timing characteristics are improved; 

let us see one by one. 
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Cloning; cloning as it implies that we sometimes may need to duplicate a gate. So, what 

we are actually talking about let me first intuitively tell you then I shall talk about that. 
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Let us say we have a gate, this gate output maybe going to more than one place. So, by 

cloning what we are doing let us say the inputs are A and B. So, we are saying that we 

are replicating this gate, same gate we are replicating twice. So, here it maybe going to 

many of the fanout points, but here we are sending this output to a subset, and this output 

to the other subset. So, maybe we are splitting outputs across these. 

So, why we may need this cloning? There can be 2 broad reasons you can think of; first 

is that in this case there can be a large number of fanout connections, which means you 

may be having a large value of load capacitance, which means this gate will be driving 

those load capacitance charging and discharging will become slow, so the overall gate 

delay will be large. But here we have distributing this CL among 2 parts, if there are 

equal let us say I divided up into CL by 2 and CL by 2. So, my delay will become 

approximately half right.  

So, here my consideration is only with respect to the charging and discharging times; if I 

can reduce the load capacitance my charging discharging time can also reduce. So, there 

can be another reason like say let us look at my total layout, let us say my this NAND 

gate was here and the output was going to so many different place. Let us say so some of 

the outputs were going here, these were 3 points where it is going; but the other outputs 

were going somewhere which are quite far apart let us say. Far apart means this each of 

this long lines will contribute to a long interconnection delay. So, intuitively this gates 

can be inserted either to handle this or to handle this long interconnection lines, maybe 

instead driving directly this long line you insert you replicate it and anther copy to use 

which will be used to drive these and these gate you can locate in a suitable position not 

here may be you can place it here and here fine. So, let us come back.  

So, just as I explained gate duplication or cloning can reduce delay for the following 2 

situations; first when the gate fanout is large, so we can split the total fanout between 

these 2 gates, so the fanout capacitance will become less effectively. Suddenly if in the 

other case I just explained, that will be gates output goes to 2 different regions or 2 

different directions, so that you cannot find out a good placement of these gate way to 

place it, because the outputs are going into 2 different corners of the chip. So, when even 

if you place in the middles still the length of the wires may longer. So, better to use 2 

copies of the gates, one you place closer to that other you place closer to that, and you 

just clone like that. 



So, the effect of cloning just now we have seen is to split the driven capacitance between 

2 equivalent gates; that means, output capacitance CL, was dividing was getting dividing 

by CL by 2 and this CL by 2, but at the cost of increasing the fanout of upstream gates 

what does this mean let us see here again. Initially this input A was coming to this single 

input of NAND gate, but now this input A must come to 2 different places. So, I am 

effectively increasing the fanout of the line A and also B. So, now, A is having a fanout, 

this is what we refer to as the upstream gates. So, these inputs which are coming after 

cloning they have to be driven both of this A and both of this B is to be driven. So, this is 

what we referred to as increasing the fanout of upstream gates. And the second one you 

can mentioned if the output going in 2 different directions. So, we can replicate gate, and 

place the clones closer to the downstream logic. Downstream logic means at the circuits 

which are towards the fanout side. So, we can place closer to that. 
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So, let us take an example we will use that same delay capacitance delay model that 

shown earlier. So, we take an example like this, where I have a NAND gate which is 

driving 5 fanout connections with a total load capacitance of 5. So, this is V the gate size 

B we have taken. 
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So, let us look at it once more for gate size V for 5 (Refer Time: 09:01) capacitance the 

delay was 45 prefer seconds. So, for this case delay is 45 prefer seconds. Now cloning 

we are doing like this, this we are splitting into. So, let us say one of them is V A and V 

B it is not necessary to that all these gates are previously same size. So, the 2 is so that 

we may have to be. So, here for example, here this V A is driving 2 loads V B is driving 

3 loads, because here the load is higher we are using a larger gate here and because the 

load is less here we are using a smaller gate here. So, V A with capacitance 2, and V B 

with capacitance 3 let us see V A with load 2 it is 30 and V B with capacitance 3 is 33. 

So, this will be 30 and this will 33. So, instead of 45 now delays is coming to 30 here and 

33 here we have been able to reduce the delay right. But as I said the fanouts of a and b 

are increasing, now this a will be having one additional and fanout b would also having 

additional fanout. 
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When the downstream capacitance is large, buffering can be better than cloning. You see 

here the reason is there buffer do not increase the fanout capacitance of upstream gates, 

like here what I am saying is. 
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Let us say I have a scenario where I am driving some load, suppose this load is large I 

am driving a large capacitance; what I am saying is that here may be the buffering is a 

better option instead of cloning. So, cloning what we are saying that cloning by cloning 



we are sharing the load, some part of the load we are sharing here some part of the load 

we are sharing here dividing output. 

So, we are saying that the use of buffer can be better in cases where your driving some of 

the load capacitance is very large. Because the advantage of buffering is that say at the 

input side you are not increasing the fanout of the load capacitance, this capacitance 

becomes remains the minimum capacitance. But here if you are using like here suppose 

if this is C, then the effective capacitance here will becomes twice C because you are 

driving 2 gates now right? This is what I am just referring to here; because buffers do not 

increase the fanout capacitance of upstream gates. 

But of course, placement driven cloning is very powerful concept as we said that, if there 

are some fanout targets which are located in somehow else of the chip, some other part 

of the chip then a clone of the driving gate can be placed closer to that; these will 

consists of so called placement driven cloning. We are doing cloning not just by looking 

at the loads or other things, and also we are looking where they are going. If you see 

there a cluster here you place a clone place a copy of clone near to that cluster, if there 

are some other points going there you place another copy of clone near to that cluster 

like that you do. 
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So, let us take an example here; let us say here there was a gate which was driving5 

signals d f g h; where let us say d e f are closed together close to v, but g and n is little 



further away. So, what we are saying is that you clone a gate and this new copy v dash 

you place it closer to g h, we do not keep it adjacent to v; keep it in little further maybe 

these wires will become longer, but this delay will become much less fine. 
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Now, the other techniques redesigning of the fanin tree; redesigning of the fan in tree 

means whenever there is a fanin connection. 
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Just be take next take an example like this, suppose means we have a gate netlist like this 

here the type of this not important just there are 3 gates in 2 levels a b c d are the inputs, 



and the actual arrival time of this of this inputs are shown 4 3 1 0, which means the first 

input is arriving late the last input is arriving earliest. 

Now, if I implement this gate like this, 1 denotes the delay of the gates. If we implement 

this function like this, then the output will be available only after 6 minutes of time. 

Because one of the input a is coming only at 4; then 1 and 1 6. But suppose I do it like 

this now apparent different logic designer, logic design say that this a bad design, here I 

have 2 level that is means the delay was 2 there is 3 level. So, the delay should be three, 

but delay may be 3 in these static cases, but if you look at the arrival time this realization 

is better with this respect to timing. 

Why? Because this slowest input a is encountering only one gate delay. So, now, the 

output will get ready by 5, because 1 and 1 this output will ready by 2 3 and 2, this 

output will ready by 4. So, this output will be ready by 5. So, here the output was coming 

at time 6, but after this restructuring your actual arrival time of output is becoming 5. So, 

this is the advantage. So, fanin restructuring is this whenever there are number of lines 

coming of the input of the gates, that using simply Boolean rules you can redesign the 

network such that this slowest signal lines you try to put in a place which will get the 

fastest route to the output like here you have done fine. 
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Similarly, we can do for the output side; like not only the input lines, but also the output 

load capacitance you can balance across the different sigma let us take an examples, first 

we shall comeback to the slide again. 
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Let us see the example first; let us suppose you have a circuit like this, where there was 

gate here the delay of 1, there were 2 buffers y 1 and y 2. Let us say this path I call it as a 

path 1, this path I call it as part 2 this buffer is driving these 2 lines, and this buffer was 

driving this line let us say. But here what I do is that let us say we see these lines are 

ultimately coming from the same source same fanout, I broken up using buffer into this 1 

and 2 and 3. 

Now, suppose this one of this lines I can move it to here from here like this. So, if I do it 

then possibly I do not need this buffer any more here, I am not showing this may be 

going to other places also. So, one of the path, one of the buffers might get eliminated. 

Now maybe it was the case, that path 1 was the shorter, path we are trying to make it 

faster. So, this may be one method to do it. So, let us go back to the slide. So, in the 

example we just saw this y 1 was required because the load capacitance of the path 1 was 

large; load capacitance of this path 1 was large, you see it was driving 2 fellows to 2 

inputs that is why we needed a buffer here. So, by redesigning the fanout tree what we 

did? We reduce the load capacitance of path 1 and so the buffer y 1 was avoided. So, this 

we shifted to here this buffer was already there.  



So, it was already driving, so there is no problem, but this buffer you can avoid right? 

But this increased delay of path 2 we can accept suppose it was not only critical path. So, 

if you this kind of transformation actually the load on the second buffer will increase, so 

the delay on the path 2 will increase, but may be this path 2 as having sufficient positive 

flags. So, this was critical at all. So, even because of this additional increase in the delay, 

this is still remains with the positive flag. So, this can be acceptable fine. 
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Swapping commutative pin means there are many gates, where if you swap some of the 

pins they remain functionally equivalent, let us take some examples. 
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Let us take a 3 input and gate A B C which output is A B and C, now if you swap the 

gate with C A B it is same or C B A they are all same because this and function is 

commutative, A B is equal to B A. So, you can use there is a the rule of you can use rule 

commutative to prove this easily. Similarly the basic gates are all commutative in nature 

NAND or nor even exclusive or they are all commutative in nature you can swap inputs 

in any way you want the output function not will change, they remain functionally the 

same. But suppose I have some other function blocks let us say multiplexer, I have a 

multiplexer I have A B and the select line S here and this is the output. 

Now, suppose I say that I swap my inputs, I make this B I make this A, this function will 

not be equivalent to this, this is not equivalent. Because if S equal to 0 in this case A was 

selected, but now here B will get be selected. So, there are certain functional blocks for 

which you cannot do this swapping of the pins, and the pins which can be swapped they 

are called commutative pins. For all the basic gates the pins are all commutative and you 

can easily swap all of them right. So, this method says that you can swap commutative 

pins. 

Now, another thing you observed at the level of the gates this looks very fine that even if 

you swap this no change. 
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But if you look at a transistor level circuit, let us say I am just showing you one simple 

example a 3 input NAND. So, a transistor level circuit will consists of the pull up there 

will be 3 beta transistors, let us say A B C. In the pull down there may be 3 parallel 

transistors n type, now this output maybe driving some load capacitance CL, this is V 

DD. Now what I am saying is that although we are saying that this gate is commutative 

with respect to the inputs A B and C let us say the output is f is f, but you see when this 

A is switching, right. 

Suppose B and C are already 0 and 0, A was 0, A is becoming A was 1 it is becoming 0. 

So, B 0 and 0 means this was conducting, this was conducting, A was 1 means this is of 

now this is conducting, now when A is conducting. So, this will be the path. 

Now, the other case is that when I talk about C, this A B were already conducting; now I 

have to consider delay between this point and this point only. So, the net delay or this 

signal propagation delay did not be all from VDD to here, for some cases I may need to 

take the whole path some cases shorter paths. So, the delay across the pins can also be 

little different for a gate like this what we are trying to say. So, here what we are saying 

is that in actual transistor level netlist, the commutative pins which are so functionally 

can have different delays. 



So, rule of the thumb is that if a signally coming later, you assign it to an input pin which 

is faster, at first signal is coming earlier we can assign it to a pin which is slower just rule 

of thumb. 
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So, this is simple example is shown here, these indicate the delays of the inputs; like 

these are 2 input gates both delays are 1 and 1, here it is 1 and 2 and these are the arrival 

times. So, for this realization the output arrival time will be 2 plus 2 plus 1 5, but if I 

make a commutation in the input it bring c here, b and a here then 0 1 0 is earlier. So, by 

2 this will ready 2 by 3 this will be ready. So, from 5 we have reduced the delay to 3. 
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So, this is also one kind of a technique in which you can adjust the inputs by committing 

them so as to improve the delay. And last one is gate decomposition means there are 

some rules of bullion algebra. So, using which you can decompose gates into smaller 

gates, well the reason is (Refer Time: 25:44) one is of course, if you divide into smaller 

gates may be the overall delay become less, and also for a larger gates your MOS level 

transistor level network can be very complex, there will be more capacity effects 

involved delay will be larger, but if you can break it up into smaller gates that can be 

advantageous in some cases. 
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So, this slide was showing a simple example, suppose there was 2 level and or 

realization. Now we know that any 2 level and or equivalent to 2 level NAND, NAND. 

So, this is equivalent to this. So, I can have a realization like this, here we need three 2 

input NAND gates and one 3 input NAND gates, but this 3 input NAND gates you can 

possibly break it up into a 2 input and followed by 2 input NAND. So, here I have we 

have Alton realization where all the gates of 2 inputs only. So, this kind of a transmission 

may also have an impact on the delay, because in this case the delay of a 2 input gate and 

a delay of 3 input gate will not be the same they will be different. But here we are trying 

to meet the uniform. 
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And a Boolean restructuring is a technique where you can use the rules of switching 

algebra have Boolean algebra, to find out some common sub expressions essentially; and 

there is example which is shown in the next slide, which uses the distributive law of 

Boolean algebra, which says that a or b c is the same as a or b and a or c right. 

So, this kind of a distributive law you can use to improve timing; and in the example we 

are taking 2 functions one is x is equal to a or b c, other is y is equal to a b or c right we 

shall come back to this let us see this functions first. 
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So, this x is the function used to recall a or b c. Now using distributive law you can write 

it as a or b a or c, similarly y was a b or c. So, in distributive law you can write a or b, a 

or c. So, just exactly like this we have to implement like this a or b, this implements a or 

c, this implements b or c. So, by just ending the required to all outputs you get x and y. 

Now, if we assume that the input arrival time of the inputs are 4 1 and 2; a is coming at 

4, b at 1, c at 2, 4 1 2. So, the delay will be 4 plus 1 plus 1 the maximum for both the 

cases 6 and 6. But now suppose we are not using this way, we are using straight 

implementation like this a or b c, a b or c that is you are using and in the first level or in 

the second level. So, you see since a is coming out straight. So, here the delay will be 5, 

but why still 6? Because a is coming at 4 then you need to get delays. So, at least one of 

them were able to speed up, right. 

So, with this we have seen a number of techniques using restructure netlist, so that some 

you can say characteristics which respective timing can be improved, because we need a 

lot of this kind of corrective actions to be taken after we carry out static timing analysis 

we find out that there are lot of timing requirements, which are not been met we may 

have to make a number of changes and transmissions the circuit netlist placement. So, 

we have talked about some of these techniques which have quite commonly used. 



So, in our next lecture we shall be continuing with this we shall looking at the overall 

performance driven flow at what we have learned so far, that what it looks like in an 

integrated sense. 

Thank you. 


