
VLSI Physical Design 

Prof. Indranil Sengupta 

Department of Computer Science and Engineering 

Indian Institute of Technology, Kharagpur 

 

Lecture – 38 

Timing-Driven Routing 

 

So, if you recall in our last lecture we were talking about the timing driven placement 

issues some algorithms and some techniques that are used there. So we continue with our 

discussion today. So today we start with some discussion on timing driven routing. 

So, the basic idea is as follows, see means when we talked about timing driven 

placement our objective was how to place the blocks such that some timing constraints 

were made with respect to criticality slacks and so on. And now we are talking about 

routing. We are talking about the individual nets typically there will be multi pin nets. 

Net will be connecting more than 2 points in general. So, how to layout those nets on the 

metal wires so that some delay and some other requirements or constraints are met or 

satisfied. So let us look into this. 
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So, here the motivation I have already talked about earlier also, so we mention that in 

today’s VLSI chips interconnects contribute significantly to the total signal delay, 

because of 2 things you see, because of the scaling down of feature sizes the transistors 

are becoming smaller gates are also becoming smaller there are switching speeds are 



increasing, so gates are becoming faster, but if you think of the interconnecting wires 

they are biking they are becoming thinner. Thinner means their resistance per unit length 

is increasing and also pairs of wires which are running in parallel, they are now running 

much closer together. So there are more capacitive effects between them. There are some 

cross talk and other issues. So these issues are coming into the picture because of which 

interconnection today is playing a more significant role means for deciding the overall 

delay as compared to the delay of the individual gates, fine. 

So, here when you talk about timing driven routing, so we are talking about possibly 2 

objective functions or means objective criteria. So we may seek to minimize either one 

of them or both. Maximum sink delay, well sink what is a sink? Sink is something like 

this. Let us say I have a net. 
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Let us consider a net like this. There is a point which needs to be connected to several 

other points. So there are so many ways to connect them. I am showing one possible 

connections. So a one of these points we refer to as the source and the other points to 

which the source needs to be connected is called the sink. Now when we talk about the 

maximum sink delay, so what we are talking about is this. From this source down to each 

of the sinks what are the delays. So the delays in general be different because the paths 

are different they will be varying in length and other parasitic effects will also be 

different. So we want to minimize the maximum sink delay; that means, this 



internetwork tree what we are drawing this has to be balanced in some way. So that the 

distance or the total delay from the source to the sinks are not that much different they 

should be balanced and the maximum sink delay should be minimized as far as possible. 

This is of course; one of the criteria and the second criteria as you can see is the total 

wire length which means my interconnection should be such that the total length of the 

wire should be minimum. Now you see earlier when we talked about the traditional 

routing there our main criteria were to minimize the wire length. So whatever we are 

talking about there we were mainly talking about how much was the total Manhattan 

distance between the 2 points Steiner tree cost and so on and so forth. But here in 

addition to the total wire length we are also talking about the worst case delay from a 

source down to some of the sinks what is the maximum delay of this paths fine. 
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So, let us introduce some notations. So we consider a particular net we call it as net. The 

source node we designate it as s 0. Let us assume that there are n number of sink nodes s 

1 to s n. So we define a graph, where the vertices of a graph of this graph are the points 

that need to be connected. So one is this source and other is the sink. So let us say our 

graph may look like this. 
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This is v 0 this is say v 1 this is say v 2. Let us say here is v 3. Let us say here is v 4. So 

this is the source and these are the 4 sinks. Now we have to connect then in some way 

this is our requirement. So addition we are also defining some weights of an edge 

between a pair of vertices v i and v j, there is an edge so this e v i v j denotes the edge, 

between v i and v j. And we can define a weight of the edge the weight of that edge will 

indicate the routing cost between v i and v j.  

For example, let us say here between v 3 and v 4 this can be one possible connection. So 

the weight between them will indicate the cost of this. Between v 2 and v 3 the 

connection may be like this. So when we talk about a graph means we will assume that 

there will be edge between v 2 and v 3, there is an edge between v 3 and v 4 may be 

there can be other edges. Also so potentially there can be edge between any pair of 

vertices. So I am showing some of the edges so the weight of this each of this edges will 

indicate that what will be the cost or the delay of the path connecting these 2 pair of 

vertices. This of course, will determine or be determined by the wire length and also on 

the resistance and capacitive resistive and capacitive effects that the RC delays in the 

other parasitic effects, fine. 

So, I mean effectively when you talk about connecting a set of points in terms of a graph 

we would want that what we need is a tree is a spanning tree. Now let us again look take 

an example to illustrate this. 
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Let us say I have again a set of vertices. It is I am just showing a few. So we define a tree 

see a tree is what a graph. Graph is what a set of vertices connected by some edges. So a 

tree is a graph where there are no cycles. Because you see when I am connecting a set of 

points, there is no point in making a connection like this where already I have connected 

the 4 points in addition I am making another connection like this. So I have made a cycle 

here so there is no point in have a cycle in such an interconnection tree because 

ultimately we are talking about interconnecting these points. So what do we need is a 

tree and when you talk about a spanning tree. So what is a spanning tree? A spanning 

tree is a tree that covers all the vertices. So for this graph there can be so many possible 

spanning trees. One possible spanning tree can be this. Spanning tree is a way of 

connecting all the vertices such that there is no cycle anywhere because cycles for a 

interconnection network does not make any sense. 

Now, with respect to this spanning tree so in this diagram I am showing a spanning tree 

with respect to the spanning tree let us call this spanning tree as T. We define 2 terms, 

one is the radius of the spanning tree and the other is the cost of the spanning tree. Now 

you see these points will be located on the 2 dimensional grid in some exact co ordinates. 

So we can also define some weights. Let us say between v 0, v 1 this is a weight W 01, 

let us say this is a weight W 12, this is a weight W 23 and W 24. So these weights 

actually indicate that what will be the delay or estimated delay along these 

interconnecting segments of wires. Now when I talk about cost, cost means the total 



weight sum you can say, the sum of the weights of this spanning tree. So suppose this is 

the spanning. This is a spanning tree with respect to this I am trying to connect. So if I 

take this sum of all the weights that will define my cost. This is one factor cost, and the 

second one which we call as radius. What is radius is the worst case distance between 

any pair of vertices. Let us say between v 1 and v 3, between vertices v 1 and v 3, what 

will be the distance W 12 plus W 23. This will be the delay estimate 1 2 plus W 23. 

Say between v 0 and v 3 what will be the delay, 0 1 1 2 2 3. So like this you can estimate 

the distance or the delay between every pair of vertices. Now the maximum of this that is 

defined as the radius; maximum you can say pair wise delay. This will define as a radius. 

You see both of these are important. Cost will tell me that what will be my total 

connecting wire length; that means, my cost in terms of the interconnection area and this 

radius tells me that what will be the maximum pair wise delay; that means, the longest 

path in this spanning tree that will tell that if there is a signal transition at v 0 so how 

much delay or how much time it will take for that signal transition to reach some other 

node. So the maximum of that will determine the maximum delay of my net. So, here we 

are defining radius and cost. Radius is the length of the longest pair wise sourcing path 

and cost is the total edge weight, some of the edges in this spanning tree. 
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So just one observation you can have, that when we talk about the wire length between 

any pair of vertices between a source and a sink. This wire length is also some kind of a 



measure of delay because longer the wire typically delay will be longer, but there are 

other issues as you know that there can be the parasitic resistance capacitances so along 

the wire because of that not only the length of the wires some other neighboring affects 

also can come in, but roughly speaking length of the wire is a measure of the delay.  

So, because traditional routing algorithm as we have seen earlier, it aims to minimize 

wire length. So we can say that well in intuitively should minimize both radius and cost, 

but will see I will take an example, a little later will see that you cannot really optimize 

radius and cost simultaneously. They are mutually conflicting in some sense. So 

minimizing radius, we can say it is a shallow kind of a tree; that means, the tree is not 

spreading out the tree is quite compact the radius is minimum. I mean such versus you 

can say minimum cost which means I have a tree whose total edge weights are very light. 

The total cost of the edges is less. So we are defining a tradeoff. Tradeoff means we can 

have in the extreme case 2 different kinds of trees. So the first kind of tree is one which 

has minimum radius; that means, it is not spreading out it is short in terms of the span. 

The radius the distance between any pair of vertices in the tree is shortest. 

So, there is a classical algorithm called Dijkstras algorithm. This algorithm can be used 

to find the minimum radius spanning tree. Because you see what Dijkstras algorithm 

does given a graph it finds out the minimum distance path between any pair of vertices, 

like let us say I have a graph like this there are some vertices. 
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Suppose I have a graph. So each edge will be having some weight. Each edge will be 

having some weight. It is a measure of the cost. Now what Dijkstras algorithm says that 

between any pair of vertices let us call it v i let us call this vertices v j. It will find out the 

shortest path. Let us say the shortest path is this. So if the shortest path is this let us give 

these to vertices some name also let us call it v m and v n, if the shortest path between v i 

and v j is this then it can be easily proved through means arguments that the shortest path 

between v i and v m should be this v i and v n should be this only. It cannot be some 

other path because if there is a shorter path up to v n. Then you could have reached v j 

via that path. 

So, whenever I have a shortest path all the vertices along the shortest path also will be 

included in the shortest path delay. Similarly let us say when you consider the shortest 

path between v i and some other vertices let us say this; you may find that will my 

shortest path is this. So if you include all the shortest path like this already we have 

found out a spanning tree. See the green and the red edges the this form a spanning tree 

so from a particular source, this spanning tree will tell you the shortest distance path will 

give you the shortest distance path up to each of these vertices. Right and this is what 

Dijkstas algorithm does. This is a very standard algorithm so it basically starts with one 

vertex and iteratively adds one of the edges depending on some cost criteria. So it finds 

out which one is the lowest cost like for example, it is starts with a initial node v i. It 

checks that there are 2 vertices connected to v i, which one has the shortest weight. 

Suppose this has 5 this has 7 so it will pick up this. And it will visit this node and declare 

that this is the shortest path from v i to here, in this way you proceed at every step you 

add one more vertex to this graph and in the process you construct the tree, fine. 

In the other extreme you can have a tree that has a minimum cost, and again there is well 

known algorithm called Prims algorithm. Now Prim’s algorithm what it does? It actually 

constructs a minimum spanning tree. Minimum spanning tree is a tree spanning tree 

which who’s some of the edge weights is minimum. Now this is what we are wanting in 

the minimum cost tree. So we have 2 alternate ways of constructing the tree Dijkstra’s or 

Prim’s. One will give you minimum radius other will give you minimum cost. 
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So, but because of either large cost or large radius, as I shall see an example a little later 

neither of tree in it is purest sense is desirable. So what we need is some kind of a 

compromise. This is shown in these example as we see now. 
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Let us look at this example where there are some points. This S0 is the source and there 

are 1, 2, 3, 4 other points. These are the sinks one, 2, 3, 4. So the first 2 diagrams they 

show the shallow tree and the light tree constructed using Dijkstras and Prims algorithm 

respectively. Now this numbers alongside the edges they give the cost of the respective 



edges. In this case these are the Manhattan distance as you can see 5 means 1, 2, 3, 4, 5, 

7 means 1, 2, 3, 4, 5, 6, 7 in this way you can compute the cost. And this is the tree as 

you can see if you compute the sum of all the edges 5 plus 2 plus 6 plus 7 this will be 

more than 3 plus 2 plus 3 plus 5. This is a lower cost the total cost is 13 as compared to 

20 here, but the problem here is that the length of the pair wise path the worst case is the 

longest from S 0 to this. This is 13. This is the radius so as compared to it here from S 0 

to this node there is a longest path which is 8 only. 

So, I am just showing here another graph which is not minimum radius nor it is 

minimum cost, but it is an intermediate one. Where you see radius is between 8 and 13 

means 11 and cost is between 20 and 13 it is 16. So what we are looking for is a tree 

which is something like this. This is a tradeoff between the shallow tree and the light tree 

fine. 
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So, there are a number of algorithms which have been proposed and these are available 

in the literature. So one is called the bounded radius bounded cost algorithm. So this 

algorithm actually gives you some bounds on radius and cost and it guarantees a 

spanning tree which will not cross that bound.  

Now the idea is very I mean intuitively simple given a graph of the vertices which we 

want to connect, you first construct a sub graph a sub set of that graph which contains all 

the vertices and some of the edges; that means, the tree. And which has small cost and 



small radius I am using a qualitative term small. So what it says is that so in this G dash 

need not be a tree G dash can be a general graph. Also, but it has a small cost and small 

radius it is the sub set of the original graph. So if I construct a tree in this graph G dash 

because it has a small cost and radius this tree is also expected to have a small radius and 

a small cost. Now the way this tree is constructed is based on parameter epsilon which is 

a positive constant which determines some kind of a tradeoff between radius and cost. 
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So, the idea is that when epsilon is equal to 0, this tree will be the minimum radius tree 

and when it is very large it will tend to become the minimum cost tree. The way you 

define the radius and cost is like this. So in the method that I am talking about radius is 

upper bounded by 1 plus epsilon into the radius of the shortest path tree; that means, 

whatever is the shortest path tree of the original path the radius of this BRBC tree that 

you are getting it will be upper bounded by 1 plus epsilon times this. And cost will be 

upper bounded by a factual 1 plus 2 by epsilon. So when epsilon tends to infinity this 

term will be 0 it will be just cost and an epsilon equals to 0 this will be only radius this 

will be only 1 only. This so I am not going with the details of the algorithm, but the idea 

is like this there is a parameter that creates a tradeoff between these 2. 
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Now, there is another interesting kind of a tradeoff which you can also think off. See this 

Prims algorithm and the Dijkstras algorithms from the 2 extremes. One gives us 

minimum cost and the other gives us minimum radius. So why cannot we have a direct 

compromise between or a tradeoff between Prims and Dijkstra. So this method talks 

about that. You see the observation that is made here is that this Prims and Dijkstra 

although they are different algorithms the way they work is quite similar. How? Both the 

algorithms progressively try to construct the tree from the set of sinks, it starts with a tree 

consisting only of the source node at the beginning and at every step it adds one node 

from S and the tree is progressively constructed. The only difference is that the cost 

which node to add that is based on some cost function and this cost value will tell you 

that which is the next node which is that candidate for we included in the spanning tree 

as you are adding the nodes one by one. 
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So, just if you look at it in Prim’s algorithm the weight works is as follows. That at every 

step you just add a vertex s j like say j is the sink s j and s i is another node you just add a 

vertex such that cost of s i and s j is minimum. This is my cost function. So given a graph 

I am trying to add a vertex such that it is distance from any of the other vertices is 

minimum not necessarily from the source vertices, that is Prim’s algorithm. So this s i 

can by any one of the vertices in the existing partial tree and I am adding another node s 

j. So I am trying to minimize. I am to select that s i for which the s i, s j cost is minimum 

and Dijkstras algorithm here we are trying to minimize the cost of this s j with respect to 

the original source S 0. So whenever we add an edge s i, s j cost will be actually the cost 

from S 0 to si plus cost of s i to s j this is Dijkstra. 

So, just looking at these 2 the combination or the tradeoff says that you modify the cost 

function by adding a factor gamma, just write gamma into cost S 0 s i plus cost of s i s j. 

So you can see if your parameter gamma is equal to 0, the cost function becomes same as 

the Prims algorithm. And if gamma equals to 1 it becomes same as Dijkstras algorithm. 

And any value between 0 and 1 it will actually represent a tradeoff. So if it is closer to 0 

closer to 0 means it will be closer to Prims if it is closer to 1 means it will be closer to 

Dijkstras. 
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So, you can have a tradeoff like this. This is what I mentioned for gamma equals to 0 is 

identical to Prims algorithm gamma equal to 1 it becomes Dijkstras algorithm, but in 

between it is a tradeoff. 
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So, just an example is shown here. For gamma equal to 0.25 for a certain example you 

get a tree like this, but if you take a larger value of gamma equal to 0.75 you get a tree 

like this. So lower value of gamma it becomes more like a minimum spanning tree, but 



higher value of gamma it becomes more like a minimum radius tree. So you see this tree 

looks like be less spread as compared to this. 
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So, there are a few other parameters also which can be used. Like for a multi pin net 

whether a multi pins in general most of the pins are multi net, so this sink which has the 

least timing slack, we identify that sink as the critical sink. So here what you are saying 

is that, we are considering a routing tree that does not consider critical sink information. 

If we do this then we may be constructing a tree where some critical parts still remain 

some slack may become negative, which may result in the overall degradation in the 

timing performance. So here minimization of source of sink delay means we are keeping 

track of the critical sinks. And we are iteratively adding nodes to the tree keeping in view 

that which of the sinks are critical. 
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Like here we are defining a criticality factor, say alpha i, for every sink s i so the sinks 

which are critical they will be having a higher value of alpha i and the total cost of the 

tree we are computing as not only just sum of the h costs, but alpha i multiplied by the h 

cost. So the edges which are critical they will be having a higher contribution to this total 

summation. So this is the basic idea.  

So, if you try to minimize this criterion so automatically you are the sinks which are 

critical they will automatically be try to connect to some other node with a lower edge 

cost such that this overall sum is minimized. 
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Similarly, you can have a critical sink Steiner tree heuristic. So here what it does it first 

constructs a minimum cost Steiner tree excluding the critical sink. Suppose there is a 

single critical sink s c it first constructs a Steiner tree say excluding the critical sink, then 

it uses some heuristic to add s c to the existing to where to add. There are 3 heuristics 

which are proposed. One heuristic is you directly connect s c to S 0 this source. Second 

one says you introduce the shortest possible wire that can connect sc to the existing tree. 

So that the total wire length still becomes minimum this is called a monotone property. 

And the third one says you try all possible connections try to connect to all possible 

points in that tree T 0 and for each of these you do timing analysis to find out that for 

which the delay is minimum so use that. 
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So, there are other methods also like one which uses the required arrival time. So it tries 

to compute some kind of a slack like this and try to minimize this. So these I am not 

going into the detail. 

So, with this we come to the end of this lecture. We have looked at some of the timing 

driven routing strategies and techniques that can be used in the routing phase to keep the 

timing constraints in check, or they are not getting violated. 

Thank you. 


