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Time Closure (Part 5) 

 

So, we continue with our discussion on the concept of false paths. And how we can 

identify and characterize false paths in a circuit netlist. Just to recall false paths are 

important to eliminate certain paths from timing analysis to identify the criticality of 

paths and so on and so forth which can help in avoiding unnecessary calculations and 

unnecessary processing when you are trying to optimize a circuit with respect to the 

timing characteristics and parameters. 
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So, here we talk about something called static sensitization. So I shall be explaining this 

concept with the help of an example. So what I say is that given a circuit some path is 

said to be statically sensitizable, if there is an input vector such that, so from the input to 

the output any changes can be propagated means in all the other inputs to the gates that 

lie along the way are set to non-controlling values. And this static sensitization will be 

independent of gate delays. Let me illustrate this with the help of an example let me 

work this out. 
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So, this example whatever is given is a circuit like this. So let us give some name to the 

gates. G2, this is the circuit which is given this combination circuit. Just if you make a 

quick computation what is the logic function that is realized by this circuit. A b this is a 

NOR gate so the output will be a bar b bar. There is an NAND gate this output will be ab 

OR gate, this will be ab OR c. And this is NAND gate this and this so a bar b bar and ab 

will cancel out a bar b bar c. This is the final output right. Now what we are trying to say 

here is that let us consider these paths. Now we consider 2 paths first path is starting 

from input a to gate G2 to gate G3 to gate G4. This is the final output. And also similarly 

from the input b, so we are saying that these paths are not sensitizable. 

So, what do we mean by sensitizable? We recall, we mention that if I have a sequence of 

gates along a path let say I have an NAND gate, then I have an OR gate, let say I have 

another NAND gate along a path. The other inputs are, there so if I want to propagate a 

signal from one line let say from here, so along this path so I have to apply non-

controlling value to the other inputs along the gates, like this transition we will come to 

the output of this AND gate if I apply a 1 at this input for an or gate I have to apply a 0 

for a NAND gate again I have to apply one this will ensure that this transitions will 

propagate. And depending on the gate the other inputs or the side inputs must be applied 

non-controlling values so that the change can propagate, right. 



So, in this circuit also let us try in the same way that can we propagate a signal from via 

G2 G3 G4, let us try. From a via G2 means I am trying to talk about this path. A via G2, 

so this is an NAND gate so I have to apply a non-controlling value 1 in the other input, 

then via G3 is an OR gate I have to apply a 0 in the other input. So again I get into G4 

NAND gate I have to apply one here. Then only this will propagate to the output, but the 

trouble here is that if you just look that, as soon as we had applied a 1 in this other side 

input this b also has become 1 right. This means that I have to apply a 1 in b. 

Now this is a NOR gate, a 1 in any of the inputs will make the output 0, but we require a 

1 here. There is a conflict. Same thing you can check for the other parts. Just by applying 

non contouring values in the side inputs we cannot sensitize these paths. This is actually 

true just to tell you for the circuits whenever you have a something called 

RECONVERGENT paths with unequal inversion parity. Like see there are fan outs from 

a there is a fan out connection one is going via G1 then to G4 other is going via G2 G3 

G4. 

Now, in one path there is one inversion a NOR, other path there are no inverting gates. 

So in one path the number of inversions are odd other path it is even there are again 

merging into a gate. This is called Reconvergent path with unequal inversion parity so 

whenever such a thing is there is likelihood that you will not be able to synthesize these 

individual paths. So this is a drawback. Now here, why you were talking about this? You 

see here your static timing analyzer what it will tell you that, that well, this path can 

never be sensitized this will be identified as a false path, and it will say that well this is 

my only path which is of interest. So my longest delay is true, longest delay is true, right. 
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But now, let us suppose what I do is that, the same circuit, I am just applying some 

inputs and I am trying to do a timing simulation and see what is happening. So both the 

inputs the third input gets 0 the first 2 inputs are going from 1 to 0 at time t equal to 0. So 

let me show you the timing diagram so it will be good for you. So I am just marking the 

time. So this is t equal to 0, t equal to 1, 2, 3, 4 and so on. So now, to show the inputs this 

a makes a 1 to 0 transition at time t equal to 0. So let say that a input is like this, b is the 

same, b is also making a 1 to 0 transition at time t equal to 0, c is always 0 let say c is 

constant 0. Now let us just assume that the gate delays are all 1. So let us say one by one 

what will be the output of G1. G1 is the NOR of a and b. Initially both are 1, 1. So it will 

be 0 and after that both are 0, 0, it became one, but delay of 1 so it will become 1 after 

one-unit delay here and it will remain 1.  

Talk about G2, G2 is NAND. Both of them will be 1 and once they 0 they will become 0. 

So again with a delay of 1 G2 will remain 1. It will become 0 here. G3, G3 is the OR of 

G2 and c is always 0. So it will be G2 itself, but with a delay of 1. So it means the delay 

of 1 it will become like this. 

And finally, G4 what will happen. G4 is the AND of G1 and G3, G1 and G3, so you see 

it will be one getting this region, but with a delay of 1. So both are getting 1 here so after 

delay of one this will come here so it will come here it will remain till here. So you see 

here. So our false path deduction algorithm tells us that this is a false path therefore, this 



is a true critical path the longest delay is 2, but for a particular input what we have found 

is that the output is getting stable only after time t equal to 3, right you see there is a 

glitch in the output temporary change because the output is supposed to be 0m a bar b 

bar c I am applying say a0 b0 c0. So the output should be zero, but in between it is going 

to 1 periodically then it is stabilizing to 0. So the output is getting stabilized only after 

delay of 3 and not 2 right, this is what this calculation says right. 

So, here what we are saying is that, the static sensitization method that you are following 

this is doing some delay underestimation. So true delay is 3, but it will give us a delay of 

2 which is an incorrect condition, right. 
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So, what is wrong? So the wrong I said one thing I had said that there is a Reconvergent 

fanout with unequal inversion parity that condition is holding, that is one problem, but 

with respect to the controlling and non-controlling values, the issues that we are ignoring 

the timing when the values are becoming controlling and non-controlling because you 

see the values of the side inputs are not constants they are also changing in time so 

sometimes they are controlling sometimes they are non-controlling. So it is not that 

statistically in a constant way you are applying a fixed value. So temporarily they might 

the status might change and that creates the problem, right.  



So, this is what is mentioned here, the same signal can have a controlling value at one 

time and non-controlling value at another time. So let us try out something called timing 

simulation. 
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Let us see whether this gives us the correct result. Timing simulation means we simply 

calculate the times and see when signal transitions are taking place. So we again take an 

example like this. Let us assume that these are some gates some buffers NAND gate 

NAND gate some hypothetical delays, let say 2 1 4 1 1. So let us assume that there are 2 

inputs the transitions are taking place at time equal to t 0. Because the delays of this 

gates this transition will go the output with a delay of 2, so this transition will be taking 

place at 2 delay of 1 1 delay of 4 at 4. 

Now, this gate is providing a delay of 1, but here you see at time 1 it is going high at 

time 2 it is going low. So between 1 and 2 both are both are high therefore, there will be 

delay of 1 again so between 2 and 3 there will be a period where both are high. Look at 

the output of 1 this signal is going 1 at 4, but by 4 it is already at 0. So the output is 

steady 0. So timing simulation will show that if you apply this; that means, one input is 0 

other input is also one so this is basically an NAND function. So the output is supposed 

to be 0 and it is already 0, so it should be good; that means delay is 0. 

But you see for this case the delay is showing to be 0, but suppose I reduce the delay of 

one of the gates let say this is 4. 
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Let us make it 2. And a let us do the same calculation again this part is same. So here this 

transition will be appearing earlier at time 2, so here also it is making a transition so now, 

if you do an NAND these 1s and 1s will overlap. So there will be a transition after a 

delay of 1 between 3 and 4. 

So, you see only after time 4 the output is getting stabilized. So for this case as soon as 

we reduce the delay, for the same input values same input transition the delay is be 

showing at 4. So this also gives you a very interesting thing sometimes a static timing 

analyzer might show you an increase in delay whenever you are reducing the delay of 

some components. So you expect things to become faster, but as this example shows that 

for the same set of input transitions, earlier there was no delay virtually because the 

output is 0 it is always zero, but now only after time 4 the output is getting stabilized 

right, this is one issue. 
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Fine so what is wrong here? This is one thing I just now mentioned. If we reduce some 

gate delays it is possible for some delay estimate to increase, but this is actually 

contradictory right. So we would expect that if I reduce a gate delay my path delay or 

circuit delay should also reduce, but here it is happening the other way round. So my 

timing simulation is not proper in the sense, but even if I am reducing the delay of a gate 

my timing simulation is saying that the delay is increasing. 

So, this is not acceptable because in practice many gate delays can actually get reduced 

because the gate delays value that we usually use in simulation they are upper bound. We 

say a delay is 4 which means this is not actually 4 the maximum delay is 4. Because 

when you are fabricating gates in a chip there can be lots of variations in fabrication. 

Some gate maybe 3 some gate may be 2.5 some gate maybe 3.8. 4 is the maximum limit 

you are saying that is the worst case delay, right. 

So, here actually we are implicitly analyzing some circuits where gate delays are within 

some upper bound. So this creates a problem. 
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Now, we need some simulation, where some property called monotone speedup should 

be satisfied. So what is monotone speedup property? This says that if you are given a 

circuit C then we can get an circuit C dash by reducing some gate delays and in the 

process the delay estimate should also be reduced or at least be equal not go up. There is 

a monotonicity. So if you reduce some of the gate delays your total delay estimate of the 

circuit should not increase. This is the condition which is mentioned, there has to be 

monotonicity in the property. If this property satisfied you can say that your algorithm 

satisfies the monotonicity property.  
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Now, timing simulation as we have seen; obviously, does not satisfy this property, but 

we can make some modification and see just one simple thing I am explaining with an 

example, this is something which is called ex value simulation. This is also timing 

simulation, but we are not showing exact signal transitions from 1 to 0 or 0 to 1. We are 

using some special logic value called x. This notation where the transition is taking place 

at time 4, this means that this rising edge can occur anywhere between t equal to minus 

infinity and 4; that means, this change can occur anywhere in the past history. So if you 

follow this x value simulation it can be shown that the problem that you are facing that 

we will not be facing anymore right. 

Let say you are applying 0 here you are applying, say one here. And you are saying that 

previously it was x; that means this condition was true. This transition can happen 

anywhere in the past not exactly at 0. So after delay 2 this 0 will be shifted to 2, this 0 

will be shifted to 1 this 0 will be shifted to 4. This has a delay of 1. So this if we just look 

at the property of this x, this will shift to 3, because at 3 definitely both of them are at 0. 

After delay 1 before you do not know both maybe at 1. That is why it is x and finally, 

here 4 you are going up 3 you are going down so at 4 definitely you are going down. 

So, here you can easily see this simulation will tell you that only after 4 it is getting 

stabilized unlike the earlier case where you are saying that in output you are getting a 

constant 0. So if you are using x value simulation you can get some accuracy in this 

calculation right. 
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So, this is referred to as timed 3 valued simulations where instead of 0 and 1 you have an 

additional state called x, whose interpretation we have already seen here. It means that 

the signal transmission can take place anywhere before this time, not exactly at this time 

right. So with this modification the monotone speedup property is satisfied, this is the 

good thing. 
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So, now we look at another approach to detecting or identifying false path that is based 

on using a SAT solver. SAT stands for satisfiability. Satisfiability problem is very well-



known problems in switching circuits, where given a Boolean function in some special 

form say for example, the product of some forms, with SAT solver will be trying to find 

out whether there exists some combination of the input variables for which your given 

function is equal to 1. If so it will also tell you for what combination of the inputs the 

function is 1. That is the task of the SAT solver. 

So, SAT based false path analysis what it tries to do is that, now the thing is that SAT 

solver is a very general kind of a tool it can be used to solve a wide range of problems. 

And the SAT solvers that are available today many of them are freely available. They 

run very fast and then can handle quite large number of variables. Thousands of variables 

they can handle. Now this is what I mentioned that a Boolean function is given in 

product of some form. And a SAT solver will try to find out some values of the variables 

for which f equal to 1. 

So, let us see how the false path analysis problem can be mapped into a product of sum 

expression and you can use a SAT solver to solve it right. So the SAT formulation goes 

like this. This is the most important step whenever you are using SAT to solve a problem 

you have to map it properly. The decision problem is here we are trying to ask this 

question is there any input vector for which the output gets stable only after t equal to 

capital T. Like here it is something like this suppose we expect that capital T is our time 

budget with which everything should get stable. 

Now, we are asking this SAT solver can there be some input combinations for which the 

delay can exceed capitality. This is where you are posing the problem, right. 
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So, this is one possible formulation there can be other formulations also you can try out. 

So here what we are doing we are trying to characterize the set of all input vectors S 

capital T that make the outputs stable means earlier or at T equal to T no later than so ST 

is a notation it means this denotes all vectors for which the signal becomes stable within 

time T. And capital S denotes all possible input vectors for which the output becomes 

true or something. 

Now, the SAT problem the question you ask is that, whether this set difference S minus 

S capital T is it empty? See this should be equal. So for all possible test vectors so you 

should have this property, your output should be stable within ST. So if you do a set 

difference S minus ST this set should be empty. So you take a set difference and check 

for emptiness, but if you say this is not empty this means this is not satisfied; that means, 

there is a problem here. There is a timing violation. 

So, suppose corresponding to S and ST the corresponding Boolean functions are referred 

to as is F and FT. So the expression that you are giving to the SAT solver is F and not 

FT, is this product satisfied because set difference means this is true and this is false. 

This is true and this is false. Let us illustrate it with an example. 
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So, a very simple example here, we consider the circuit. So let us just work out he circuit 

once more. So we have a circuit like this. Essentially we have like this a and b are 

applied to both these inputs and we have an OR gate, c is applied here then you have a 

AND gate this is applied here. So this is g these are the delays of the gates so I will 

assume to be 1. Let us call it d, let us call it e, let us call it f. So if we just calculate the 

output expression your d is a bar b bar, this already I have just mentioned earlier e is ab, f 

equal to ab or c, and therefore, g becomes and of d and e, d and f, so it becomes a bar b 

bar c. This is what g is. 



Now, in this problem in this example, here we assume that all the primary inputs are 

arriving at time t equal to 0. So here we assume that all primary inputs arriving at t equal 

to 0, all gate delays are 1. So the question we are ask asking is the output stable at time t 

greater than 2, because 2 is our expected deadline. So here our timing analyzer told us 

that the delay should be 2, so let us see whether 2 is the correct figure or not. 
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So, we are just showing you with this example that how the SAT formulation is actually 

done. So how you do it map this into a Boolean expression. So we use a notation like this 

G1 comma t equal to 2. This denotes the set of input vectors under which the output g 

gets stable to a value 1 no later than time t equal to 2. 

You see G1 t equal to 2, so the output is supposed to be 1. So when it will be 1 when this 

is a AND gate both d and f should be 1. When just one time you need before the delay of 

this is 1. So this will be equal to d 1 comma t equal to 1 and that is intersection f 1 t equal 

to 1 because time is 1 less. So if d equal to 1 means what both the inputs of these not 

gates should be 0. And 0 so it is a 0 delay is again 1 now time will be 0 and b equal to 0, 

both together. And f equal to 1 mean there is an OR gate so either e will be 1 or c will be 

1. So c will be 1 or e will be 1. So if you just now calculate a 0 t 0 means what; that 

means, at time t equal to 0 I have all the inputs are coming. You are saying that a is 0, I 

write it as not a at time equal to 0, b equal to 0 I write it as not b, and here at time t equal 

to 0 c equal to 1 that is only c. Intersection at time t equal to 0 e equal to 1 you cannot 



say e at time t equal to 0 it is undefined. So this is empty phi so this is only c a bar b bar 

c. So let us call it s 1 t equal to 2. 

Well here and if I just assume t equal to infinity; that means, the correct logic function 

this already we have seen that and the function that is realized is a bar b bar c. So this is 

defined as the onset for t equal to infinity, so delay is not considered. So we see that 

these 2 are equal, so if you subtract these 2 it becomes null. So for the onset there is no 

problem. 
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But let us look at the offset. G 0 t equal to 2, so when g equal to 0 means anyone of d and 

f can be 0. So d equal to 0 at t equal to 1 or f equal to 0 if f equal to 0, means both e and c 

are 0 f 0 means both c and e are 0 and d 0 means anyone of them can be 1 a is 1 or b is 1, 

so a is 1 you now write down this means a time t equal to 0 a equal to and; that means, a 

or means plus or notation this is b c 0 t 0 is c bar intersection phi this becomes 0 only a 

plus b, but offset this g 0 t equal to infinity already you have calculated should be a plus 

b plus not c. So if you take a set subtraction these are not the same. 

So, to summarize, you have got this as a plus b you have got this b. If you take a set 

difference; that means, I said this not this then you get a bar b bar c bar; that means, there 

is one input combination 0 0 0 for which delay equal to 2 is not satisfiable. The delay 

will be equal to g. So this is roughly the idea how this method works. 
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To summarize, false path aware analysis is important. And this is quite well under 

understood many practical algorithms exist. So we just mentioned a couple of them. 

They can handle very large circuits quite easily because their computation and 

complexity is not so high. So the problems that need to be looked at is that incremental 

analysis if we make small changes in the circuit do you have to do the analysis all over 

or we can do some correct incremental analysis. And this logic optimization also we 

usually do a lot of optimization, so when you do optimization can you integrate the same 

process within that. And again for deep sub-micron issues we need to consider the cross 

talk and noise issues, some of these we shall be discussing later.  

So with this we come to the end of this lecture. 

Thank you. 


